Author: Jian Zhang
Publisher: Springer Nature
ISBN: 9811387192
Category : Medical
Languages : en
Pages : 386
Book Description
The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc.
Protein Allostery in Drug Discovery
Author: Jian Zhang
Publisher: Springer Nature
ISBN: 9811387192
Category : Medical
Languages : en
Pages : 386
Book Description
The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc.
Publisher: Springer Nature
ISBN: 9811387192
Category : Medical
Languages : en
Pages : 386
Book Description
The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc.
The Molecular Switch
Author: Rob Phillips
Publisher: Princeton University Press
ISBN: 0691200246
Category : Science
Languages : en
Pages : 436
Book Description
A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Switch articulates a biophysical perspective on signaling, showing how allostery—a powerful explanation of how molecules function across all biological domains—can be reformulated using equilibrium statistical mechanics, applied to diverse biological systems exhibiting switching behaviors, and successfully unify seemingly unrelated phenomena. Rob Phillips weaves together allostery and statistical mechanics via a series of biological vignettes, each of which showcases an important biological question and accompanying physical analysis. Beginning with the study of ligand-gated ion channels and their role in problems ranging from muscle action to vision, Phillips then undertakes increasingly sophisticated case studies, from bacterial chemotaxis and quorum sensing to hemoglobin and its role in mammalian physiology. He looks at G-protein coupled receptors as well as the role of allosteric molecules in gene regulation. Phillips concludes by surveying problems in biological fidelity and offering a speculative chapter on the relationship between allostery and biological Maxwell demons. Appropriate for graduate students and researchers in biophysics, physics, engineering, biology, and neuroscience, The Molecular Switch presents a unified, quantitative model for describing biological signaling phenomena.
Publisher: Princeton University Press
ISBN: 0691200246
Category : Science
Languages : en
Pages : 436
Book Description
A signature feature of living organisms is their ability to carry out purposeful actions by taking stock of the world around them. To that end, cells have an arsenal of signaling molecules linked together in signaling pathways, which switch between inactive and active conformations. The Molecular Switch articulates a biophysical perspective on signaling, showing how allostery—a powerful explanation of how molecules function across all biological domains—can be reformulated using equilibrium statistical mechanics, applied to diverse biological systems exhibiting switching behaviors, and successfully unify seemingly unrelated phenomena. Rob Phillips weaves together allostery and statistical mechanics via a series of biological vignettes, each of which showcases an important biological question and accompanying physical analysis. Beginning with the study of ligand-gated ion channels and their role in problems ranging from muscle action to vision, Phillips then undertakes increasingly sophisticated case studies, from bacterial chemotaxis and quorum sensing to hemoglobin and its role in mammalian physiology. He looks at G-protein coupled receptors as well as the role of allosteric molecules in gene regulation. Phillips concludes by surveying problems in biological fidelity and offering a speculative chapter on the relationship between allostery and biological Maxwell demons. Appropriate for graduate students and researchers in biophysics, physics, engineering, biology, and neuroscience, The Molecular Switch presents a unified, quantitative model for describing biological signaling phenomena.
Allostery
Author: Aron W. Fenton
Publisher: Humana Press
ISBN: 9781617793332
Category : Science
Languages : en
Pages : 0
Book Description
Despite considerable variability within the scientific community, allosteric regulation can best be defined functionally as how a macromolecule binds one ligand differently when a second ligand is or is not pre-bound to the macromolecule, which constitutes a vital aspect of protein structure/function. In Allostery: Methods and Protocols, expert researchers in the field provide key techniques to investigate this biological phenomenon. Focusing on heterotropic systems with some coverage of homotropic systems, this volume covers the monitoring of allosteric function, allosteric conformational changes, and allosteric changes in protein dynamics/sub-population distribution, as well as topics such as macromolecular and ligand engineering of allosteric functions and computational aids in the study of allostery. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Allostery: Methods and Protocols aids scientists in continuing to study ligand-induced, through-protein effects on protein function (ligand binding/catalysis), a phenomenon that is well recognized through the history of the life sciences and very poorly understood at the molecular level.
Publisher: Humana Press
ISBN: 9781617793332
Category : Science
Languages : en
Pages : 0
Book Description
Despite considerable variability within the scientific community, allosteric regulation can best be defined functionally as how a macromolecule binds one ligand differently when a second ligand is or is not pre-bound to the macromolecule, which constitutes a vital aspect of protein structure/function. In Allostery: Methods and Protocols, expert researchers in the field provide key techniques to investigate this biological phenomenon. Focusing on heterotropic systems with some coverage of homotropic systems, this volume covers the monitoring of allosteric function, allosteric conformational changes, and allosteric changes in protein dynamics/sub-population distribution, as well as topics such as macromolecular and ligand engineering of allosteric functions and computational aids in the study of allostery. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Allostery: Methods and Protocols aids scientists in continuing to study ligand-induced, through-protein effects on protein function (ligand binding/catalysis), a phenomenon that is well recognized through the history of the life sciences and very poorly understood at the molecular level.
Structural Biology in Drug Discovery
Author: Jean-Paul Renaud
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1437
Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1437
Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Linkage Thermodynamics of Macromolecular Interactions
Author:
Publisher: Academic Press
ISBN: 0080582249
Category : Science
Languages : en
Pages : 485
Book Description
This volume commemorates the 50th anniversary of the appearance in Volume 4 in 1948 of Dr. Jeffries Wyman's famous paper in which he "laid down" the foundations of linkage thermodynamics. Experts in this area contribute articles on the state-of-the-art of this important field and on new developments of the original theory. Among the topics covered in this volume are electrostatic contributions to molecular free energies in solution; site-specific analysis of mutational effects in proteins; allosteric transitions of the acetylcholine receptor; and deciphering the molecular code of hemoglobin allostery.
Publisher: Academic Press
ISBN: 0080582249
Category : Science
Languages : en
Pages : 485
Book Description
This volume commemorates the 50th anniversary of the appearance in Volume 4 in 1948 of Dr. Jeffries Wyman's famous paper in which he "laid down" the foundations of linkage thermodynamics. Experts in this area contribute articles on the state-of-the-art of this important field and on new developments of the original theory. Among the topics covered in this volume are electrostatic contributions to molecular free energies in solution; site-specific analysis of mutational effects in proteins; allosteric transitions of the acetylcholine receptor; and deciphering the molecular code of hemoglobin allostery.
Biomolecular Simulations in Structure-Based Drug Discovery
Author: Francesco L. Gervasio
Publisher: John Wiley & Sons
ISBN: 3527342656
Category : Medical
Languages : en
Pages : 368
Book Description
A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: -Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists -Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development -Offers numerous illustrative case studies from a wide-range of therapeutic fields -Presents an application-oriented reference that is ideal for those working in the various fields Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.
Publisher: John Wiley & Sons
ISBN: 3527342656
Category : Medical
Languages : en
Pages : 368
Book Description
A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: -Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists -Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development -Offers numerous illustrative case studies from a wide-range of therapeutic fields -Presents an application-oriented reference that is ideal for those working in the various fields Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.
Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins
Author: Ulrich Hoeger
Publisher: Springer Nature
ISBN: 3030417697
Category : Science
Languages : en
Pages : 527
Book Description
This book focuses on respiratory proteins, the broad hemoglobin family, as well as the molluscan and arachnid hemocyanins (and their multifunctional roles). Featuring 20 chapters addressing invertebrate and vertebrate respiratory proteins, lipoproteins and other body fluid proteins, and drawing on the editors’ extensive research in the field, it is a valuable addition to the Subcellular Biochemistry book series. The book covers a wide range of topics, including lipoprotein structure and lipid transport; diverse annelid, crustacean and insect defense proteins; and insect and vertebrate immune complexes. It also discusses a number of other proteins, such as the hemerythrins; serum albumin; serum amyloid A; von Willebrand factor and its interaction with factor VIII; and C-reactive protein. Given its scope, the book appeals to biologists, biomedical scientists and clinicians, as well as advanced undergraduates and postgraduates in these disciplines. Available as a printed book and also as an e-book and e-chapters, the fascinating material included is easily accessible.
Publisher: Springer Nature
ISBN: 3030417697
Category : Science
Languages : en
Pages : 527
Book Description
This book focuses on respiratory proteins, the broad hemoglobin family, as well as the molluscan and arachnid hemocyanins (and their multifunctional roles). Featuring 20 chapters addressing invertebrate and vertebrate respiratory proteins, lipoproteins and other body fluid proteins, and drawing on the editors’ extensive research in the field, it is a valuable addition to the Subcellular Biochemistry book series. The book covers a wide range of topics, including lipoprotein structure and lipid transport; diverse annelid, crustacean and insect defense proteins; and insect and vertebrate immune complexes. It also discusses a number of other proteins, such as the hemerythrins; serum albumin; serum amyloid A; von Willebrand factor and its interaction with factor VIII; and C-reactive protein. Given its scope, the book appeals to biologists, biomedical scientists and clinicians, as well as advanced undergraduates and postgraduates in these disciplines. Available as a printed book and also as an e-book and e-chapters, the fascinating material included is easily accessible.
Allosterism in Drug Discovery
Author: Dario Doller
Publisher: Royal Society of Chemistry
ISBN: 1782624597
Category : Medical
Languages : en
Pages : 458
Book Description
Although the concept of allosterism has been known for over half a century, its application in drug discovery has exploded in recent years. The emergence of novel technologies that enable molecular-level ligand-receptor interactions to be studied in studied in unprecedented detail has driven this trend. This book, written by the leaders in this young research area, describes the latest developments in allosterism for drug discovery. Bringing together research in a diverse range of scientific disciplines, Allosterism in Drug Discovery is a key reference for academics and industrialists interested in understanding allosteric interactions. The book provides an in-depth review of research using small molecules as chemical probes and drug candidates that interact allosterically with proteins of relevance to life sciences and human disease. Knowledge of these interactions can then be applied in the discovery of the novel therapeutics of the future. This book will be useful for people working in all disciplines associated with drug discovery in academia or industry, as well as postgraduate students who may be working in the design of allosteric modulators.
Publisher: Royal Society of Chemistry
ISBN: 1782624597
Category : Medical
Languages : en
Pages : 458
Book Description
Although the concept of allosterism has been known for over half a century, its application in drug discovery has exploded in recent years. The emergence of novel technologies that enable molecular-level ligand-receptor interactions to be studied in studied in unprecedented detail has driven this trend. This book, written by the leaders in this young research area, describes the latest developments in allosterism for drug discovery. Bringing together research in a diverse range of scientific disciplines, Allosterism in Drug Discovery is a key reference for academics and industrialists interested in understanding allosteric interactions. The book provides an in-depth review of research using small molecules as chemical probes and drug candidates that interact allosterically with proteins of relevance to life sciences and human disease. Knowledge of these interactions can then be applied in the discovery of the novel therapeutics of the future. This book will be useful for people working in all disciplines associated with drug discovery in academia or industry, as well as postgraduate students who may be working in the design of allosteric modulators.
Drug-Acceptor Interactions
Author: Niels Bindslev
Publisher: CRC Press
ISBN: 1351660578
Category : Medical
Languages : en
Pages : 847
Book Description
Drug-Acceptor Interactions: Modeling theoretical tools to test and evaluate experimental equilibrium effects suggests novel theoretical tools to test and evaluate drug interactions seen with combinatorial drug therapy. The book provides an in-depth, yet controversial, exploration of existing tools for analysis of dose-response studies at equilibrium or steady state. The book is recommended reading for post-graduate students and researchers engaged in the study of systems biology, networks, and the pharmacodynamics of natural or industrial drugs, as well as for medical clinicians interested in drug application and combinatorial drug therapy. Even people without mathematical skills will be able to follow the pros and cons of reaction schemes and their related distribution equations. Chapter 9 is a hands-on guide for software to plot, fit and analyze one’s own data.
Publisher: CRC Press
ISBN: 1351660578
Category : Medical
Languages : en
Pages : 847
Book Description
Drug-Acceptor Interactions: Modeling theoretical tools to test and evaluate experimental equilibrium effects suggests novel theoretical tools to test and evaluate drug interactions seen with combinatorial drug therapy. The book provides an in-depth, yet controversial, exploration of existing tools for analysis of dose-response studies at equilibrium or steady state. The book is recommended reading for post-graduate students and researchers engaged in the study of systems biology, networks, and the pharmacodynamics of natural or industrial drugs, as well as for medical clinicians interested in drug application and combinatorial drug therapy. Even people without mathematical skills will be able to follow the pros and cons of reaction schemes and their related distribution equations. Chapter 9 is a hands-on guide for software to plot, fit and analyze one’s own data.
Enzymes
Author: Robert A. Copeland
Publisher: John Wiley & Sons
ISBN: 1119793297
Category : Science
Languages : en
Pages : 581
Book Description
ENZYMES A complete and approachable introduction to the study of enzymes, from theory to practice Enzymes catalyze the bulk of important biological processes, both metabolic and biochemical. They are specialized proteins whose function is determined by their structure, understanding which is therefore a key focus of biological, pharmacological, and agrarian research, among many others. A thorough knowledge of enzyme structure, pathways, and mechanisms is a fundamental building block of the life sciences and all others connected to them. Enzymes offers a detailed introduction to this critical subject. It analyzes enzyme proteins at the structural level and details the mechanisms by which they perform their catalyzing functions. The book’s in-depth engagement with primary literature and up-to-date research allows it to continuously deploy illustrative examples and connect readers with further research on key subjects. Fully updated after decades as the standard text, this book unlocks a thriving field of biological and biochemical research. Readers of the third edition of Enzymes will also find: Expanded chapters on steady-state and transient-state enzyme kinetics, structural components of enzymes, and more New chapters on enzyme regulation, enzyme-macromolecule interactions, enzyme evolution, and enzymes in human health Key Learning Points at the beginning of each chapter to assist students and instructors Enzymes promises to continue as the standard reference on this subject for practitioners of the life sciences and related fields in both academia and industry.
Publisher: John Wiley & Sons
ISBN: 1119793297
Category : Science
Languages : en
Pages : 581
Book Description
ENZYMES A complete and approachable introduction to the study of enzymes, from theory to practice Enzymes catalyze the bulk of important biological processes, both metabolic and biochemical. They are specialized proteins whose function is determined by their structure, understanding which is therefore a key focus of biological, pharmacological, and agrarian research, among many others. A thorough knowledge of enzyme structure, pathways, and mechanisms is a fundamental building block of the life sciences and all others connected to them. Enzymes offers a detailed introduction to this critical subject. It analyzes enzyme proteins at the structural level and details the mechanisms by which they perform their catalyzing functions. The book’s in-depth engagement with primary literature and up-to-date research allows it to continuously deploy illustrative examples and connect readers with further research on key subjects. Fully updated after decades as the standard text, this book unlocks a thriving field of biological and biochemical research. Readers of the third edition of Enzymes will also find: Expanded chapters on steady-state and transient-state enzyme kinetics, structural components of enzymes, and more New chapters on enzyme regulation, enzyme-macromolecule interactions, enzyme evolution, and enzymes in human health Key Learning Points at the beginning of each chapter to assist students and instructors Enzymes promises to continue as the standard reference on this subject for practitioners of the life sciences and related fields in both academia and industry.