Author: Laurent Bernut
Publisher: Packt Publishing Ltd
ISBN: 1801810397
Category : Business & Economics
Languages : en
Pages : 377
Book Description
Leverage Python source code to revolutionize your short selling strategy and to consistently make profits in bull, bear, and sideways markets Key Features Understand techniques such as trend following, mean reversion, position sizing, and risk management in a short-selling context Implement Python source code to explore and develop your own investment strategy Test your trading strategies to limit risk and increase profits Book Description If you are in the long/short business, learning how to sell short is not a choice. Short selling is the key to raising assets under management. This book will help you demystify and hone the short selling craft, providing Python source code to construct a robust long/short portfolio. It discusses fundamental and advanced trading concepts from the perspective of a veteran short seller. This book will take you on a journey from an idea (“buy bullish stocks, sell bearish ones”) to becoming part of the elite club of long/short hedge fund algorithmic traders. You'll explore key concepts such as trading psychology, trading edge, regime definition, signal processing, position sizing, risk management, and asset allocation, one obstacle at a time. Along the way, you'll will discover simple methods to consistently generate investment ideas, and consider variables that impact returns, volatility, and overall attractiveness of returns. By the end of this book, you'll not only become familiar with some of the most sophisticated concepts in capital markets, but also have Python source code to construct a long/short product that investors are bound to find attractive. What you will learn Develop the mindset required to win the infinite, complex, random game called the stock market Demystify short selling in order to generate alpa in bull, bear, and sideways markets Generate ideas consistently on both sides of the portfolio Implement Python source code to engineer a statistically robust trading edge Develop superior risk management habits Build a long/short product that investors will find appealing Who this book is for This is a book by a practitioner for practitioners. It is designed to benefit a wide range of people, including long/short market participants, quantitative participants, proprietary traders, commodity trading advisors, retail investors (pro retailers, students, and retail quants), and long-only investors. At least 2 years of active trading experience, intermediate-level experience of the Python programming language, and basic mathematical literacy (basic statistics and algebra) are expected.
Algorithmic Short Selling with Python
Author: Laurent Bernut
Publisher: Packt Publishing Ltd
ISBN: 1801810397
Category : Business & Economics
Languages : en
Pages : 377
Book Description
Leverage Python source code to revolutionize your short selling strategy and to consistently make profits in bull, bear, and sideways markets Key Features Understand techniques such as trend following, mean reversion, position sizing, and risk management in a short-selling context Implement Python source code to explore and develop your own investment strategy Test your trading strategies to limit risk and increase profits Book Description If you are in the long/short business, learning how to sell short is not a choice. Short selling is the key to raising assets under management. This book will help you demystify and hone the short selling craft, providing Python source code to construct a robust long/short portfolio. It discusses fundamental and advanced trading concepts from the perspective of a veteran short seller. This book will take you on a journey from an idea (“buy bullish stocks, sell bearish ones”) to becoming part of the elite club of long/short hedge fund algorithmic traders. You'll explore key concepts such as trading psychology, trading edge, regime definition, signal processing, position sizing, risk management, and asset allocation, one obstacle at a time. Along the way, you'll will discover simple methods to consistently generate investment ideas, and consider variables that impact returns, volatility, and overall attractiveness of returns. By the end of this book, you'll not only become familiar with some of the most sophisticated concepts in capital markets, but also have Python source code to construct a long/short product that investors are bound to find attractive. What you will learn Develop the mindset required to win the infinite, complex, random game called the stock market Demystify short selling in order to generate alpa in bull, bear, and sideways markets Generate ideas consistently on both sides of the portfolio Implement Python source code to engineer a statistically robust trading edge Develop superior risk management habits Build a long/short product that investors will find appealing Who this book is for This is a book by a practitioner for practitioners. It is designed to benefit a wide range of people, including long/short market participants, quantitative participants, proprietary traders, commodity trading advisors, retail investors (pro retailers, students, and retail quants), and long-only investors. At least 2 years of active trading experience, intermediate-level experience of the Python programming language, and basic mathematical literacy (basic statistics and algebra) are expected.
Publisher: Packt Publishing Ltd
ISBN: 1801810397
Category : Business & Economics
Languages : en
Pages : 377
Book Description
Leverage Python source code to revolutionize your short selling strategy and to consistently make profits in bull, bear, and sideways markets Key Features Understand techniques such as trend following, mean reversion, position sizing, and risk management in a short-selling context Implement Python source code to explore and develop your own investment strategy Test your trading strategies to limit risk and increase profits Book Description If you are in the long/short business, learning how to sell short is not a choice. Short selling is the key to raising assets under management. This book will help you demystify and hone the short selling craft, providing Python source code to construct a robust long/short portfolio. It discusses fundamental and advanced trading concepts from the perspective of a veteran short seller. This book will take you on a journey from an idea (“buy bullish stocks, sell bearish ones”) to becoming part of the elite club of long/short hedge fund algorithmic traders. You'll explore key concepts such as trading psychology, trading edge, regime definition, signal processing, position sizing, risk management, and asset allocation, one obstacle at a time. Along the way, you'll will discover simple methods to consistently generate investment ideas, and consider variables that impact returns, volatility, and overall attractiveness of returns. By the end of this book, you'll not only become familiar with some of the most sophisticated concepts in capital markets, but also have Python source code to construct a long/short product that investors are bound to find attractive. What you will learn Develop the mindset required to win the infinite, complex, random game called the stock market Demystify short selling in order to generate alpa in bull, bear, and sideways markets Generate ideas consistently on both sides of the portfolio Implement Python source code to engineer a statistically robust trading edge Develop superior risk management habits Build a long/short product that investors will find appealing Who this book is for This is a book by a practitioner for practitioners. It is designed to benefit a wide range of people, including long/short market participants, quantitative participants, proprietary traders, commodity trading advisors, retail investors (pro retailers, students, and retail quants), and long-only investors. At least 2 years of active trading experience, intermediate-level experience of the Python programming language, and basic mathematical literacy (basic statistics and algebra) are expected.
Python for Algorithmic Trading
Author: Yves Hilpisch
Publisher: O'Reilly Media
ISBN: 1492053325
Category : Computers
Languages : en
Pages : 380
Book Description
Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Publisher: O'Reilly Media
ISBN: 1492053325
Category : Computers
Languages : en
Pages : 380
Book Description
Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Python Algorithmic Trading Cookbook
Author: Pushpak Dagade
Publisher: Packt Publishing Ltd
ISBN: 1838982515
Category : Computers
Languages : en
Pages : 528
Book Description
Build a solid foundation in algorithmic trading by developing, testing and executing powerful trading strategies with real market data using Python Key FeaturesBuild a strong foundation in algorithmic trading by becoming well-versed with the basics of financial marketsDemystify jargon related to understanding and placing multiple types of trading ordersDevise trading strategies and increase your odds of making a profit without human interventionBook Description If you want to find out how you can build a solid foundation in algorithmic trading using Python, this cookbook is here to help. Starting by setting up the Python environment for trading and connectivity with brokers, you’ll then learn the important aspects of financial markets. As you progress, you’ll learn to fetch financial instruments, query and calculate various types of candles and historical data, and finally, compute and plot technical indicators. Next, you’ll learn how to place various types of orders, such as regular, bracket, and cover orders, and understand their state transitions. Later chapters will cover backtesting, paper trading, and finally real trading for the algorithmic strategies that you've created. You’ll even understand how to automate trading and find the right strategy for making effective decisions that would otherwise be impossible for human traders. By the end of this book, you’ll be able to use Python libraries to conduct key tasks in the algorithmic trading ecosystem. Note: For demonstration, we're using Zerodha, an Indian Stock Market broker. If you're not an Indian resident, you won't be able to use Zerodha and therefore will not be able to test the examples directly. However, you can take inspiration from the book and apply the concepts across your preferred stock market broker of choice. What you will learnUse Python to set up connectivity with brokersHandle and manipulate time series data using PythonFetch a list of exchanges, segments, financial instruments, and historical data to interact with the real marketUnderstand, fetch, and calculate various types of candles and use them to compute and plot diverse types of technical indicatorsDevelop and improve the performance of algorithmic trading strategiesPerform backtesting and paper trading on algorithmic trading strategiesImplement real trading in the live hours of stock marketsWho this book is for If you are a financial analyst, financial trader, data analyst, algorithmic trader, trading enthusiast or anyone who wants to learn algorithmic trading with Python and important techniques to address challenges faced in the finance domain, this book is for you. Basic working knowledge of the Python programming language is expected. Although fundamental knowledge of trade-related terminologies will be helpful, it is not mandatory.
Publisher: Packt Publishing Ltd
ISBN: 1838982515
Category : Computers
Languages : en
Pages : 528
Book Description
Build a solid foundation in algorithmic trading by developing, testing and executing powerful trading strategies with real market data using Python Key FeaturesBuild a strong foundation in algorithmic trading by becoming well-versed with the basics of financial marketsDemystify jargon related to understanding and placing multiple types of trading ordersDevise trading strategies and increase your odds of making a profit without human interventionBook Description If you want to find out how you can build a solid foundation in algorithmic trading using Python, this cookbook is here to help. Starting by setting up the Python environment for trading and connectivity with brokers, you’ll then learn the important aspects of financial markets. As you progress, you’ll learn to fetch financial instruments, query and calculate various types of candles and historical data, and finally, compute and plot technical indicators. Next, you’ll learn how to place various types of orders, such as regular, bracket, and cover orders, and understand their state transitions. Later chapters will cover backtesting, paper trading, and finally real trading for the algorithmic strategies that you've created. You’ll even understand how to automate trading and find the right strategy for making effective decisions that would otherwise be impossible for human traders. By the end of this book, you’ll be able to use Python libraries to conduct key tasks in the algorithmic trading ecosystem. Note: For demonstration, we're using Zerodha, an Indian Stock Market broker. If you're not an Indian resident, you won't be able to use Zerodha and therefore will not be able to test the examples directly. However, you can take inspiration from the book and apply the concepts across your preferred stock market broker of choice. What you will learnUse Python to set up connectivity with brokersHandle and manipulate time series data using PythonFetch a list of exchanges, segments, financial instruments, and historical data to interact with the real marketUnderstand, fetch, and calculate various types of candles and use them to compute and plot diverse types of technical indicatorsDevelop and improve the performance of algorithmic trading strategiesPerform backtesting and paper trading on algorithmic trading strategiesImplement real trading in the live hours of stock marketsWho this book is for If you are a financial analyst, financial trader, data analyst, algorithmic trader, trading enthusiast or anyone who wants to learn algorithmic trading with Python and important techniques to address challenges faced in the finance domain, this book is for you. Basic working knowledge of the Python programming language is expected. Although fundamental knowledge of trade-related terminologies will be helpful, it is not mandatory.
Python for Finance
Author: Yves J. Hilpisch
Publisher: "O'Reilly Media, Inc."
ISBN: 1492024295
Category : Computers
Languages : en
Pages : 682
Book Description
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Publisher: "O'Reilly Media, Inc."
ISBN: 1492024295
Category : Computers
Languages : en
Pages : 682
Book Description
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Algorithmic Trading
Author: Ernie Chan
Publisher: John Wiley & Sons
ISBN: 1118460146
Category : Business & Economics
Languages : en
Pages : 230
Book Description
Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader
Publisher: John Wiley & Sons
ISBN: 1118460146
Category : Business & Economics
Languages : en
Pages : 230
Book Description
Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader
Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Publisher: Packt Publishing Ltd
ISBN: 1839216786
Category : Business & Economics
Languages : en
Pages : 822
Book Description
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Python and Algorithmic Thinking for the Complete Beginner
Author: Aristides Bouras
Publisher: Packt Publishing Ltd
ISBN: 1836209266
Category : Computers
Languages : en
Pages : 908
Book Description
Unlock the power of Python with this comprehensive guide, “Python and Algorithmic Thinking for the Complete Beginner.” It covers everything from computer basics to advanced decision and loop control structures. Key Features Comprehensive coverage from basic computer operations to advanced programming concepts Step-by-step progression of each topic, along with tips and tricks to enhance coding efficiency In-depth exploration of Python and algorithmic thinking with exercises and practical examples Book DescriptionThis course is meticulously designed to take beginners on a journey through the fascinating world of Python programming and algorithmic thinking. The initial chapters lay a strong foundation, starting with the basics of how computers operate, moving into Python programming, and familiarizing learners with integrated development environments like IDLE and Visual Studio Code. Further, the course delves into essential programming constructs such as variables, constants, input/output handling, and operators. You'll gain practical experience with trace tables, sequence control structures, and decision control structures through comprehensive exercises and examples. The curriculum emphasizes hands-on learning with chapters dedicated to manipulating numbers, strings, and understanding complex mathematical expressions. By mastering these concepts, you'll be well-prepared to tackle more advanced topics. The final chapters introduce you to object-oriented programming and file manipulation, rounding out your skill set. Throughout the course, practical tips and tricks are provided to enhance your coding efficiency and problem-solving skills. By the end of this course, you will have a robust understanding of Python programming and the ability to apply algorithmic thinking to solve real-world problems.What you will learn Understand how computers work and the basics of Python programming Install and use integrated development environments (IDEs) Develop skills in decision and loop control structures Manipulate data using lists, dictionaries, and strings Apply algorithmic thinking to solve complex problems Gain proficiency in object-oriented programming & file manipulation Who this book is for This course is ideal for absolute beginners with no prior programming experience. Basic computer literacy is required, but no specific knowledge of programming or algorithms is necessary. It is also suitable for individuals looking to refresh their Python skills and enhance their understanding of algorithmic thinking. High school and college students interested in programming, professionals seeking to upskill, and hobbyists eager to learn a new programming language will all find value in this course.
Publisher: Packt Publishing Ltd
ISBN: 1836209266
Category : Computers
Languages : en
Pages : 908
Book Description
Unlock the power of Python with this comprehensive guide, “Python and Algorithmic Thinking for the Complete Beginner.” It covers everything from computer basics to advanced decision and loop control structures. Key Features Comprehensive coverage from basic computer operations to advanced programming concepts Step-by-step progression of each topic, along with tips and tricks to enhance coding efficiency In-depth exploration of Python and algorithmic thinking with exercises and practical examples Book DescriptionThis course is meticulously designed to take beginners on a journey through the fascinating world of Python programming and algorithmic thinking. The initial chapters lay a strong foundation, starting with the basics of how computers operate, moving into Python programming, and familiarizing learners with integrated development environments like IDLE and Visual Studio Code. Further, the course delves into essential programming constructs such as variables, constants, input/output handling, and operators. You'll gain practical experience with trace tables, sequence control structures, and decision control structures through comprehensive exercises and examples. The curriculum emphasizes hands-on learning with chapters dedicated to manipulating numbers, strings, and understanding complex mathematical expressions. By mastering these concepts, you'll be well-prepared to tackle more advanced topics. The final chapters introduce you to object-oriented programming and file manipulation, rounding out your skill set. Throughout the course, practical tips and tricks are provided to enhance your coding efficiency and problem-solving skills. By the end of this course, you will have a robust understanding of Python programming and the ability to apply algorithmic thinking to solve real-world problems.What you will learn Understand how computers work and the basics of Python programming Install and use integrated development environments (IDEs) Develop skills in decision and loop control structures Manipulate data using lists, dictionaries, and strings Apply algorithmic thinking to solve complex problems Gain proficiency in object-oriented programming & file manipulation Who this book is for This course is ideal for absolute beginners with no prior programming experience. Basic computer literacy is required, but no specific knowledge of programming or algorithms is necessary. It is also suitable for individuals looking to refresh their Python skills and enhance their understanding of algorithmic thinking. High school and college students interested in programming, professionals seeking to upskill, and hobbyists eager to learn a new programming language will all find value in this course.
Algorithmic Trading with Interactive Brokers
Author: Matthew Scarpino
Publisher:
ISBN: 9780997303735
Category :
Languages : en
Pages :
Book Description
Through Interactive Brokers, software developers can write applications that read financial data, scan for contracts, and submit orders automatically. Individuals can now take advantage of the same high-speed decision making and order placement that professional trading firms use.This book walks through the process of developing applications based on IB's Trader Workstation (TWS) programming interface. Beginning chapters introduce the fundamental classes and functions, while later chapters show how they can be used to implement full-scale trading systems. With an algorithmic system in place, traders don't have to stare at charts for hours on end. Just launch the trading application and let the TWS API do its work.The material in this book focuses on Python and C++ coding, so readers are presumed to have a basic familiarity with one of these languages. However, no experience in financial trading is assumed. If you're new to the world of stocks, bonds, options, and futures, this book explains what these financial instruments are and how to write applications capable of trading them.
Publisher:
ISBN: 9780997303735
Category :
Languages : en
Pages :
Book Description
Through Interactive Brokers, software developers can write applications that read financial data, scan for contracts, and submit orders automatically. Individuals can now take advantage of the same high-speed decision making and order placement that professional trading firms use.This book walks through the process of developing applications based on IB's Trader Workstation (TWS) programming interface. Beginning chapters introduce the fundamental classes and functions, while later chapters show how they can be used to implement full-scale trading systems. With an algorithmic system in place, traders don't have to stare at charts for hours on end. Just launch the trading application and let the TWS API do its work.The material in this book focuses on Python and C++ coding, so readers are presumed to have a basic familiarity with one of these languages. However, no experience in financial trading is assumed. If you're new to the world of stocks, bonds, options, and futures, this book explains what these financial instruments are and how to write applications capable of trading them.
Statistical Arbitrage
Author: Andrew Pole
Publisher: John Wiley & Sons
ISBN: 1118160738
Category : Business & Economics
Languages : en
Pages : 230
Book Description
While statistical arbitrage has faced some tough times?as markets experienced dramatic changes in dynamics beginning in 2000?new developments in algorithmic trading have allowed it to rise from the ashes of that fire. Based on the results of author Andrew Pole?s own research and experience running a statistical arbitrage hedge fund for eight years?in partnership with a group whose own history stretches back to the dawn of what was first called pairs trading?this unique guide provides detailed insights into the nuances of a proven investment strategy. Filled with in-depth insights and expert advice, Statistical Arbitrage contains comprehensive analysis that will appeal to both investors looking for an overview of this discipline, as well as quants looking for critical insights into modeling, risk management, and implementation of the strategy.
Publisher: John Wiley & Sons
ISBN: 1118160738
Category : Business & Economics
Languages : en
Pages : 230
Book Description
While statistical arbitrage has faced some tough times?as markets experienced dramatic changes in dynamics beginning in 2000?new developments in algorithmic trading have allowed it to rise from the ashes of that fire. Based on the results of author Andrew Pole?s own research and experience running a statistical arbitrage hedge fund for eight years?in partnership with a group whose own history stretches back to the dawn of what was first called pairs trading?this unique guide provides detailed insights into the nuances of a proven investment strategy. Filled with in-depth insights and expert advice, Statistical Arbitrage contains comprehensive analysis that will appeal to both investors looking for an overview of this discipline, as well as quants looking for critical insights into modeling, risk management, and implementation of the strategy.
Hands-On Financial Trading with Python
Author: Jiri Pik
Publisher: Packt Publishing Ltd
ISBN: 1838988807
Category : Computers
Languages : en
Pages : 360
Book Description
Build and backtest your algorithmic trading strategies to gain a true advantage in the market Key FeaturesGet quality insights from market data, stock analysis, and create your own data visualisationsLearn how to navigate the different features in Python's data analysis librariesStart systematically approaching quantitative research and strategy generation/backtesting in algorithmic tradingBook Description Creating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage. This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets. What you will learnDiscover how quantitative analysis works by covering financial statistics and ARIMAUse core Python libraries to perform quantitative research and strategy development using real datasetsUnderstand how to access financial and economic data in PythonImplement effective data visualization with MatplotlibApply scientific computing and data visualization with popular Python librariesBuild and deploy backtesting algorithmic trading strategiesWho this book is for If you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1838988807
Category : Computers
Languages : en
Pages : 360
Book Description
Build and backtest your algorithmic trading strategies to gain a true advantage in the market Key FeaturesGet quality insights from market data, stock analysis, and create your own data visualisationsLearn how to navigate the different features in Python's data analysis librariesStart systematically approaching quantitative research and strategy generation/backtesting in algorithmic tradingBook Description Creating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage. This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets. What you will learnDiscover how quantitative analysis works by covering financial statistics and ARIMAUse core Python libraries to perform quantitative research and strategy development using real datasetsUnderstand how to access financial and economic data in PythonImplement effective data visualization with MatplotlibApply scientific computing and data visualization with popular Python librariesBuild and deploy backtesting algorithmic trading strategiesWho this book is for If you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.