Author: Manuel Lladser
Publisher: American Mathematical Soc.
ISBN: 082184783X
Category : Mathematics
Languages : en
Pages : 251
Book Description
This volume contains the proceedings of the AMS Special Sessions on Algorithmic Probability and Combinatories held at DePaul University on October 5-6, 2007 and at the University of British Columbia on October 4-5, 2008. This volume collects cutting-edge research and expository on algorithmic probability and combinatories. It includes contributions by well-established experts and younger researchers who use generating functions, algebraic and probabilistic methods as well as asymptotic analysis on a daily basis. Walks in the quarter-plane and random walks (quantum, rotor and self-avoiding), permutation tableaux, and random permutations are considered. In addition, articles in the volume present a variety of saddle-point and geometric methods for the asymptotic analysis of the coefficients of single-and multivariable generating functions associated with combinatorial objects and discrete random structures. The volume should appeal to pure and applied mathematicians, as well as mathematical physicists; in particular, anyone interested in computational aspects of probability, combinatories and enumeration. Furthermore, the expository or partly expository papers included in this volume should serve as an entry point to this literature not only to experts in other areas, but also to graduate students.
Algorithmic Probability and Combinatorics
Author: Manuel Lladser
Publisher: American Mathematical Soc.
ISBN: 082184783X
Category : Mathematics
Languages : en
Pages : 251
Book Description
This volume contains the proceedings of the AMS Special Sessions on Algorithmic Probability and Combinatories held at DePaul University on October 5-6, 2007 and at the University of British Columbia on October 4-5, 2008. This volume collects cutting-edge research and expository on algorithmic probability and combinatories. It includes contributions by well-established experts and younger researchers who use generating functions, algebraic and probabilistic methods as well as asymptotic analysis on a daily basis. Walks in the quarter-plane and random walks (quantum, rotor and self-avoiding), permutation tableaux, and random permutations are considered. In addition, articles in the volume present a variety of saddle-point and geometric methods for the asymptotic analysis of the coefficients of single-and multivariable generating functions associated with combinatorial objects and discrete random structures. The volume should appeal to pure and applied mathematicians, as well as mathematical physicists; in particular, anyone interested in computational aspects of probability, combinatories and enumeration. Furthermore, the expository or partly expository papers included in this volume should serve as an entry point to this literature not only to experts in other areas, but also to graduate students.
Publisher: American Mathematical Soc.
ISBN: 082184783X
Category : Mathematics
Languages : en
Pages : 251
Book Description
This volume contains the proceedings of the AMS Special Sessions on Algorithmic Probability and Combinatories held at DePaul University on October 5-6, 2007 and at the University of British Columbia on October 4-5, 2008. This volume collects cutting-edge research and expository on algorithmic probability and combinatories. It includes contributions by well-established experts and younger researchers who use generating functions, algebraic and probabilistic methods as well as asymptotic analysis on a daily basis. Walks in the quarter-plane and random walks (quantum, rotor and self-avoiding), permutation tableaux, and random permutations are considered. In addition, articles in the volume present a variety of saddle-point and geometric methods for the asymptotic analysis of the coefficients of single-and multivariable generating functions associated with combinatorial objects and discrete random structures. The volume should appeal to pure and applied mathematicians, as well as mathematical physicists; in particular, anyone interested in computational aspects of probability, combinatories and enumeration. Furthermore, the expository or partly expository papers included in this volume should serve as an entry point to this literature not only to experts in other areas, but also to graduate students.
Algorithmic Probability
Author: Marcel F. Neuts
Publisher: CRC Press
ISBN: 9780412996917
Category : Mathematics
Languages : en
Pages : 488
Book Description
This unique text collects more than 400 problems in combinatorics, derived distributions, discrete and continuous Markov chains, and models requiring a computer experimental approach. The first book to deal with simplified versions of models encountered in the contemporary statistical or engineering literature, Algorithmic Probability emphasizes correct interpretation of numerical results and visualization of the dynamics of stochastic processes. A significant contribution to the field of applied probability, Algorithmic Probability is ideal both as a secondary text in probability courses and as a reference. Engineers and operations analysts seeking solutions to practical problems will find it a valuable resource, as will advanced undergraduate and graduate students in mathematics, statistics, operations research, industrial and electrical engineering, and computer science.
Publisher: CRC Press
ISBN: 9780412996917
Category : Mathematics
Languages : en
Pages : 488
Book Description
This unique text collects more than 400 problems in combinatorics, derived distributions, discrete and continuous Markov chains, and models requiring a computer experimental approach. The first book to deal with simplified versions of models encountered in the contemporary statistical or engineering literature, Algorithmic Probability emphasizes correct interpretation of numerical results and visualization of the dynamics of stochastic processes. A significant contribution to the field of applied probability, Algorithmic Probability is ideal both as a secondary text in probability courses and as a reference. Engineers and operations analysts seeking solutions to practical problems will find it a valuable resource, as will advanced undergraduate and graduate students in mathematics, statistics, operations research, industrial and electrical engineering, and computer science.
Probabilistic Methods for Algorithmic Discrete Mathematics
Author: Michel Habib
Publisher: Springer Science & Business Media
ISBN: 3662127881
Category : Mathematics
Languages : en
Pages : 342
Book Description
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Publisher: Springer Science & Business Media
ISBN: 3662127881
Category : Mathematics
Languages : en
Pages : 342
Book Description
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Combinatorics and Probability
Author: Graham Brightwell
Publisher: Cambridge University Press
ISBN: 0521872073
Category : Mathematics
Languages : en
Pages : 27
Book Description
This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.
Publisher: Cambridge University Press
ISBN: 0521872073
Category : Mathematics
Languages : en
Pages : 27
Book Description
This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.
Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
The Probabilistic Method
Author: Noga Alon
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396
Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396
Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Combinatorics: The Art of Counting
Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 328
Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Analytic Combinatorics in Several Variables
Author: Robin Pemantle
Publisher: Cambridge University Press
ISBN: 1107031575
Category : Mathematics
Languages : en
Pages : 395
Book Description
Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Publisher: Cambridge University Press
ISBN: 1107031575
Category : Mathematics
Languages : en
Pages : 395
Book Description
Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.