Rational Homotopy Theory

Rational Homotopy Theory PDF Author: Yves Felix
Publisher: Springer Science & Business Media
ISBN: 0387950680
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.

Rational Homotopy Theory

Rational Homotopy Theory PDF Author: Yves Felix
Publisher: Springer Science & Business Media
ISBN: 0387950680
Category : Mathematics
Languages : en
Pages : 589

Get Book Here

Book Description
This is a long awaited book on rational homotopy theory which contains all the main theorems with complete proofs, and more elementary proofs for many results that were proved ten or fifteen years ago. The authors added a frist section on classical algebraic topology to make the book accessible to students with only little background in algebraic topology.

Rational Homotopy Theory and Differential Forms

Rational Homotopy Theory and Differential Forms PDF Author: Phillip Griffiths
Publisher: Springer Science & Business Media
ISBN: 1461484685
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham’s theorem on simplicial complexes. In addition, Sullivan’s results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.

Algebraic Models in Geometry

Algebraic Models in Geometry PDF Author: Yves Félix
Publisher: Oxford University Press
ISBN: 0199206511
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
A text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory.

Rational Homotopy Theory Ii

Rational Homotopy Theory Ii PDF Author: Steve Halperin
Publisher: World Scientific
ISBN: 9814651451
Category : Mathematics
Languages : en
Pages : 449

Get Book Here

Book Description
This research monograph is a detailed account with complete proofs of rational homotopy theory for general non-simply connected spaces, based on the minimal models introduced by Sullivan in his original seminal article. Much of the content consists of new results, including generalizations of known results in the simply connected case. The monograph also includes an expanded version of recently published results about the growth and structure of the rational homotopy groups of finite dimensional CW complexes, and concludes with a number of open questions.This monograph is a sequel to the book Rational Homotopy Theory [RHT], published by Springer in 2001, but is self-contained except only that some results from [RHT] are simply quoted without proof.

Homotopy of Operads and Grothendieck-Teichmuller Groups

Homotopy of Operads and Grothendieck-Teichmuller Groups PDF Author: Benoit Fresse
Publisher: American Mathematical Soc.
ISBN: 1470434814
Category : Mathematics
Languages : en
Pages : 581

Get Book Here

Book Description
The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.

Pure and Applied Algebraic Topology

Pure and Applied Algebraic Topology PDF Author: My Ismail Mamouni
Publisher: Cambridge Scholars Publishing
ISBN: 1527579794
Category : Mathematics
Languages : en
Pages : 105

Get Book Here

Book Description
Algebraic topology is a fascinating and dynamic field at the crossroads of topology and algebra, both pure and applied. This volume is the first comprehensive, book-form treatment of the subject. It provides a swift walk through the main basic tools of algebraic topology, including homology and homotopy groups, as well as an in-depth discussion of the major research techniques of rational homotopy theory. The book will be of interest to students, professors, and researchers, as well as anyone interested in discovering real applications of mathematics in fields which affect our daily lives, including medicine, imagery, cosmic radiation, and writing systems.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

Algebraic Homotopy

Algebraic Homotopy PDF Author: Hans J. Baues
Publisher: Cambridge University Press
ISBN: 0521333768
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
This book gives a general outlook on homotopy theory; fundamental concepts, such as homotopy groups and spectral sequences, are developed from a few axioms and are thus available in a broad variety of contexts. Many examples and applications in topology and algebra are discussed, including an introduction to rational homotopy theory in terms of both differential Lie algebras and De Rham algebras. The author describes powerful tools for homotopy classification problems, particularly for the classification of homotopy types and for the computation of the group homotopy equivalences. Applications and examples of such computations are given, including when the fundamental group is non-trivial. Moreover, the deep connection between the homotopy classification problems and the cohomology theory of small categories is demonstrated. The prerequisites of the book are few: elementary topology and algebra. Consequently, this account will be valuable for non-specialists and experts alike. It is an important supplement to the standard presentations of algebraic topology, homotopy theory, category theory and homological algebra.

Algebraic Topology - Rational Homotopy

Algebraic Topology - Rational Homotopy PDF Author: Yves Felix
Publisher: Springer
ISBN: 3540392041
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.

Handbook of Algebraic Topology

Handbook of Algebraic Topology PDF Author: I.M. James
Publisher: Elsevier
ISBN: 0080532985
Category : Mathematics
Languages : en
Pages : 1336

Get Book Here

Book Description
Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.