Algebraic Multigrid for Markov Chains and Tensor Decomposition

Algebraic Multigrid for Markov Chains and Tensor Decomposition PDF Author: Killian Miller
Publisher:
ISBN:
Category :
Languages : en
Pages : 253

Get Book Here

Book Description
The majority of this thesis is concerned with the development of efficient and robust numerical methods based on adaptive algebraic multigrid to compute the stationary distribution of Markov chains. It is shown that classical algebraic multigrid techniques can be applied in an exact interpolation scheme framework to compute the stationary distribution of irreducible, homogeneous Markov chains. A quantitative analysis shows that algebraically smooth multiplicative error is locally constant along strong connections in a scaled system operator, which suggests that classical algebraic multigrid coarsening and interpolation can be applied to the class of nonsymmetric irreducible singular M-matrices with zero column sums. Acceleration schemes based on fine-level iterant recombination, and over-correction of the coarse-grid correction are developed to improve the rate of convergence and scalability of simple adaptive aggregation multigrid methods for Markov chains. Numerical tests over a wide range of challenging nonsymmetric test problems demonstrate the effectiveness of the proposed multilevel method and the acceleration schemes. This thesis also investigates the application of adaptive algebraic multigrid techniques for computing the canonical decomposition of higher-order tensors. The canonical decomposition is formulated as a least squares optimization problem, for which local minimizers are computed by solving the first-order optimality equations. The proposed multilevel method consists of two phases: an adaptive setup phase that uses a multiplicative correction scheme in conjunction with bootstrap algebraic multigrid interpolation to build the necessary operators on each level, and a solve phase that uses additive correction cycles based on the full approximation scheme to efficiently obtain an accurate solution. The alternating least squares method, which is a standard one-level iterative method for computing the canonical decomposition, is used as the relaxation scheme. Numerical tests show that for certain test problems arising from the discretization of high-dimensional partial differential equations on regular lattices the proposed multilevel method significantly outperforms the standard alternating least squares method when a high level of accuracy is required.

Algebraic Multigrid for Markov Chains and Tensor Decomposition

Algebraic Multigrid for Markov Chains and Tensor Decomposition PDF Author: Killian Miller
Publisher:
ISBN:
Category :
Languages : en
Pages : 253

Get Book Here

Book Description
The majority of this thesis is concerned with the development of efficient and robust numerical methods based on adaptive algebraic multigrid to compute the stationary distribution of Markov chains. It is shown that classical algebraic multigrid techniques can be applied in an exact interpolation scheme framework to compute the stationary distribution of irreducible, homogeneous Markov chains. A quantitative analysis shows that algebraically smooth multiplicative error is locally constant along strong connections in a scaled system operator, which suggests that classical algebraic multigrid coarsening and interpolation can be applied to the class of nonsymmetric irreducible singular M-matrices with zero column sums. Acceleration schemes based on fine-level iterant recombination, and over-correction of the coarse-grid correction are developed to improve the rate of convergence and scalability of simple adaptive aggregation multigrid methods for Markov chains. Numerical tests over a wide range of challenging nonsymmetric test problems demonstrate the effectiveness of the proposed multilevel method and the acceleration schemes. This thesis also investigates the application of adaptive algebraic multigrid techniques for computing the canonical decomposition of higher-order tensors. The canonical decomposition is formulated as a least squares optimization problem, for which local minimizers are computed by solving the first-order optimality equations. The proposed multilevel method consists of two phases: an adaptive setup phase that uses a multiplicative correction scheme in conjunction with bootstrap algebraic multigrid interpolation to build the necessary operators on each level, and a solve phase that uses additive correction cycles based on the full approximation scheme to efficiently obtain an accurate solution. The alternating least squares method, which is a standard one-level iterative method for computing the canonical decomposition, is used as the relaxation scheme. Numerical tests show that for certain test problems arising from the discretization of high-dimensional partial differential equations on regular lattices the proposed multilevel method significantly outperforms the standard alternating least squares method when a high level of accuracy is required.

Computations with Markov Chains

Computations with Markov Chains PDF Author: William J. Stewart
Publisher: Springer Science & Business Media
ISBN: 1461522412
Category : Mathematics
Languages : en
Pages : 605

Get Book Here

Book Description
Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.

Kronecker Modeling and Analysis of Multidimensional Markovian Systems

Kronecker Modeling and Analysis of Multidimensional Markovian Systems PDF Author: Tuğrul Dayar
Publisher: Springer
ISBN: 3319971298
Category : Mathematics
Languages : en
Pages : 269

Get Book Here

Book Description
This work considers Kronecker-based models with finite as well as countably infinite state spaces for multidimensional Markovian systems by paying particular attention to those whose reachable state spaces are smaller than their product state spaces. Numerical methods for steady-state and transient analysis of Kronecker-based multidimensional Markovian models are discussed in detail together with implementation issues. Case studies are provided to explain concepts and motivate use of methods. Having grown out of research from the past twenty years, this book expands upon the author’s previously published book Analyzing Markov Chains using Kronecker Products (Springer, 2012). The subject matter is interdisciplinary and at the intersection of applied mathematics and computer science. The book will be of use to researchers and graduate students with an understanding of basic linear algebra, probability, and discrete mathematics.

Numerical Methods for Structured Markov Chains

Numerical Methods for Structured Markov Chains PDF Author: Dario A. Bini
Publisher: Oxford University Press, USA
ISBN: 0198527683
Category : Computers
Languages : en
Pages : 340

Get Book Here

Book Description
Intersecting two large research areas - numerical analysis and applied probability/queuing theory - this book is a self-contained introduction to the numerical solution of structured Markov chains, which have a wide applicability in queuing theory and stochastic modeling and include M/G/1 and GI/M/1-type Markov chain, quasi-birth-death processes, non-skip free queues and tree-like stochastic processes. Written for applied probabilists and numerical analysts, but accessible toengineers and scientists working on telecommunications and evaluation of computer systems performances, it provides a systematic treatment of the theory and algorithms for important families of structured Markov chains and a thorough overview of the current literature.The book, consisting of nine Chapters, is presented in three parts. Part 1 covers a basic description of the fundamental concepts related to Markov chains, a systematic treatment of the structure matrix tools, including finite Toeplitz matrices, displacement operators, FFT, and the infinite block Toeplitz matrices, their relationship with matrix power series and the fundamental problems of solving matrix equations and computing canonical factorizations. Part 2 deals with the description andanalysis of structure Markov chains and includes M/G/1, quasi-birth-death processes, non-skip-free queues and tree-like processes. Part 3 covers solution algorithms where new convergence and applicability results are proved. Each chapter ends with bibliographic notes for further reading, and the bookends with an appendix collecting the main general concepts and results used in the book, a list of the main annotations and algorithms used in the book, and an extensive index.

Multigrid Methods for Highdimensional, Tensor Structured Continuous Time Markov Chains

Multigrid Methods for Highdimensional, Tensor Structured Continuous Time Markov Chains PDF Author: Sonja Sokolović
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Matrix-Based Multigrid

Matrix-Based Multigrid PDF Author: Yair Shapira
Publisher: Springer Science & Business Media
ISBN: 0387497641
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Matrix-Based Multigrid introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This book can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge only in basic linear algebra and calculus.

Markov Set-Chains

Markov Set-Chains PDF Author: Darald J. Hartfiel
Publisher: Springer
ISBN: 3540687114
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.

A Multigrid Tutorial

A Multigrid Tutorial PDF Author: William L. Briggs
Publisher: SIAM
ISBN: 0898714621
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
Mathematics of Computing -- Numerical Analysis.

On the Multilevel Solution Algorithm for Markov Chains

On the Multilevel Solution Algorithm for Markov Chains PDF Author: Graham Horton
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Get Book Here

Book Description
We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle which uses an operator-dependent coarsening yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.

Introduction to the Numerical Solution of Markov Chains

Introduction to the Numerical Solution of Markov Chains PDF Author: William J. Stewart
Publisher: Princeton University Press
ISBN: 0691223386
Category : Mathematics
Languages : en
Pages : 561

Get Book Here

Book Description
A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse--and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing methods--direct, single-and multi-vector iterative, and projection methods. More specifically, he considers recursive methods often used when the structure of the Markov chain is upper Hessenberg, iterative aggregation/disaggregation methods that are particularly appropriate when it is NCD (nearly completely decomposable), and reduced schemes for cases in which the chain is periodic. There are chapters on methods for computing transient solutions, on stochastic automata networks, and, finally, on currently available software. Throughout Stewart draws on numerous examples and comparisons among the methods he so thoroughly explains.