Author: Naruyoshi Asano
Publisher: Longman
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages : 448
Book Description
Algebraic and Spectral Methods for Nonlinear Wave Equations
Author: Naruyoshi Asano
Publisher: Longman
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages : 448
Book Description
Publisher: Longman
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages : 448
Book Description
Algebraic and Spectral Methods for Nonlinear Wave Equations
Author: Naruyoshi Asano
Publisher: Longman Scientific and Technical
ISBN:
Category : Mathematics
Languages : en
Pages : 448
Book Description
Publisher: Longman Scientific and Technical
ISBN:
Category : Mathematics
Languages : en
Pages : 448
Book Description
Spectral Methods in Soliton Equations
Author: I D Iliev
Publisher: CRC Press
ISBN: 9780582239630
Category : Mathematics
Languages : en
Pages : 412
Book Description
Soliton theory as a method for solving some classes of nonlinear evolution equations (soliton equations) is one of the most actively developing topics in mathematical physics. This book presents some spectral theory methods for the investigation of soliton equations ad the inverse scattering problems related to these equations. The authors give the theory of expansions for the Sturm-Liouville operator and the Dirac operator. On this basis, the spectral theory of recursion operators generating Korteweg-de Vries type equations is presented and the Ablowitz-Kaup-Newell-Segur scheme, through which the inverse scattering method could be understood as a Fourier-type transformation, is considered. Following these ideas, the authors investigate some of the questions related to inverse spectral problems, i.e. uniqueness theorems, construction of explicit solutions and approximative methods for solving inverse scattering problems. A rigorous investigation of the stability of soliton solutions including solitary waves for equations which do not allow integration within inverse scattering method is also presented.
Publisher: CRC Press
ISBN: 9780582239630
Category : Mathematics
Languages : en
Pages : 412
Book Description
Soliton theory as a method for solving some classes of nonlinear evolution equations (soliton equations) is one of the most actively developing topics in mathematical physics. This book presents some spectral theory methods for the investigation of soliton equations ad the inverse scattering problems related to these equations. The authors give the theory of expansions for the Sturm-Liouville operator and the Dirac operator. On this basis, the spectral theory of recursion operators generating Korteweg-de Vries type equations is presented and the Ablowitz-Kaup-Newell-Segur scheme, through which the inverse scattering method could be understood as a Fourier-type transformation, is considered. Following these ideas, the authors investigate some of the questions related to inverse spectral problems, i.e. uniqueness theorems, construction of explicit solutions and approximative methods for solving inverse scattering problems. A rigorous investigation of the stability of soliton solutions including solitary waves for equations which do not allow integration within inverse scattering method is also presented.
Chebyshev and Fourier Spectral Methods
Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Nonlinear Waves in Integrable and Non-integrable Systems
Author: Jianke Yang
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Spectral Methods
Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Recent Advances in Differential Equations and Mathematical Physics
Author: Nikolai Chernov
Publisher: American Mathematical Soc.
ISBN: 0821838407
Category : Mathematics
Languages : en
Pages : 354
Book Description
Surveys topics in differential equations that are associated with mathematical physics. This book includes such topics as asymptotic formulas for the ground-state energy of fermionic gas, $J$-self adjoint Dirac operators, and spectral theory of Schrodinger operators. It is suitable for mathematicians and physicists.
Publisher: American Mathematical Soc.
ISBN: 0821838407
Category : Mathematics
Languages : en
Pages : 354
Book Description
Surveys topics in differential equations that are associated with mathematical physics. This book includes such topics as asymptotic formulas for the ground-state energy of fermionic gas, $J$-self adjoint Dirac operators, and spectral theory of Schrodinger operators. It is suitable for mathematicians and physicists.
Deformations of Mathematical Structures II
Author: Julian Lawrynowicz
Publisher: Springer Science & Business Media
ISBN: 9780792325765
Category : Mathematics
Languages : en
Pages : 486
Book Description
These Proceedings contain selected original papers by the speakers invited to the Seminar on Deformations, organized in 1988/92 by Julian Lawrynowicz (L6di), whose most fruitful parts took place in 1988 in E6di, Paris and Mexico City (Profs. J. Adem, F. de1. Castillo Alvarado, G. Contreras Puente, R.M. Porter, E. Ramirez de Arellano - Mexico, D.F.; Prof. B. Gaveau - Paris; Profs. J. Lawrynowicz, J. Rembielinski, L. Wojtczak - Mdi et all.), in 1990 in -Mdi, Tokyo and Sapporo (Profs. S. Koshi - Sapporo, O. Suzuki - Tokyo, J. Lawrynowicz - L6di et all.), in 1991 in t6diand Rome (Profs. S. Marchiafava, F. Succi- Rome, J. Lawrynowicz, 1. Wojtczak - l.6di et all.), and in 1992 in E6di and M alinka - Mazurian Lakeland, Poland (Profs. C. Surry - Saint Etienne, J. Lawrynowicz, J. Rembielinski, 1. Wojtczak - L6di et all.). The meetings of the Seminar and the Proceedings were supported by the Polish state Committee for Scientific Research (KBN) and the -L6di Society of Sciences and Arts (LTN).
Publisher: Springer Science & Business Media
ISBN: 9780792325765
Category : Mathematics
Languages : en
Pages : 486
Book Description
These Proceedings contain selected original papers by the speakers invited to the Seminar on Deformations, organized in 1988/92 by Julian Lawrynowicz (L6di), whose most fruitful parts took place in 1988 in E6di, Paris and Mexico City (Profs. J. Adem, F. de1. Castillo Alvarado, G. Contreras Puente, R.M. Porter, E. Ramirez de Arellano - Mexico, D.F.; Prof. B. Gaveau - Paris; Profs. J. Lawrynowicz, J. Rembielinski, L. Wojtczak - Mdi et all.), in 1990 in -Mdi, Tokyo and Sapporo (Profs. S. Koshi - Sapporo, O. Suzuki - Tokyo, J. Lawrynowicz - L6di et all.), in 1991 in t6diand Rome (Profs. S. Marchiafava, F. Succi- Rome, J. Lawrynowicz, 1. Wojtczak - l.6di et all.), and in 1992 in E6di and M alinka - Mazurian Lakeland, Poland (Profs. C. Surry - Saint Etienne, J. Lawrynowicz, J. Rembielinski, 1. Wojtczak - L6di et all.). The meetings of the Seminar and the Proceedings were supported by the Polish state Committee for Scientific Research (KBN) and the -L6di Society of Sciences and Arts (LTN).
Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522
Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522
Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.
Chebyshev and Fourier Spectral Methods
Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 0486141926
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Publisher: Courier Corporation
ISBN: 0486141926
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.