Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes PDF Author: Takayuki Hibi
Publisher: World Scientific
ISBN: 9811200491
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes PDF Author: Takayuki Hibi
Publisher: World Scientific
ISBN: 9811200491
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.

Algebraic and Geometric Combinatorics on Lattice Polytopes

Algebraic and Geometric Combinatorics on Lattice Polytopes PDF Author: Takayuki Hibi
Publisher: World Scientific Publishing Company
ISBN: 9789811200472
Category : Polytopes
Languages : en
Pages : 0

Get Book Here

Book Description
This volume consists of research papers and expository survey articles presented by the invited speakers of the workshop 'Algebraic and Geometric Combinatorics on Lattice Polytopes'. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further development of many research areas surrounding lattice polytopes. With the survey articles, research papers and open problems, graduate students can learn fundamental materials on lattice polytopes and researchers can find exciting activities and avenues for further exploration on lattice polytopes.

Convexity from the Geometric Point of View

Convexity from the Geometric Point of View PDF Author: Vitor Balestro
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195

Get Book Here

Book Description


Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology PDF Author: L. Pachter
Publisher: Cambridge University Press
ISBN: 9780521857000
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.

Computational Algebraic Geometry

Computational Algebraic Geometry PDF Author: Frederic Eyssette
Publisher: Springer Science & Business Media
ISBN: 1461227526
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
The theory and practice of computation in algebraic geometry and related domains, from a mathematical point of view, has generated an increasing interest both for its rich theoretical possibilities and its usefulness in applications in science and engineering. In fact, it is one of the master keys for future significant improvement of the computer algebra systems (e.g., Reduce, Macsyma, Maple, Mathematica, Axiom, Macaulay, etc.) that have become such useful tools for many scientists in a variety of disciplines. The major themes covered in this volume, arising from papers p- sented at the conference MEGA-92 were: - Effective methods and complexity issues in commutative algebra, projective geometry, real geometry, and algebraic number theory - Algebra-geometric methods in algebraic computing and applica tions. MEGA-92 was the second of a new series of European conferences on the general theme of Effective Methods in Algebraic Geometry. It was held in Nice, France, on April 21-25, 1992 and built on the themes presented at MEGA-90 (Livomo, Italy, April 17-21, 1990). The next conference - MEGA-94 - will be held in Santander, Spain in the spring of 1994. The Organizing committee that initiatiod and supervises this bi enniel conference consists of A. Conte (Torino), J.H. Davenport (Bath), A. Galligo (Nice), D. Yu. Grigoriev (Petersburg), J. Heintz (Buenos Aires), W. Lassner (Leipzig), D. Lazard (paris), H.M. MOller (Hagen), T. Mora (Genova), M. Pohst (DUsseldort), T. Recio (Santander), J.J.

Existence of Unimodular Triangulations–Positive Results

Existence of Unimodular Triangulations–Positive Results PDF Author: Christian Haase
Publisher: American Mathematical Soc.
ISBN: 1470447169
Category : Education
Languages : en
Pages : 83

Get Book Here

Book Description
Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.

Algebra, Geometry and Software Systems

Algebra, Geometry and Software Systems PDF Author: Michael Joswig
Publisher: Springer Science & Business Media
ISBN: 3662051486
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.

A Celebration of Algebraic Geometry

A Celebration of Algebraic Geometry PDF Author: Brendan Hassett
Publisher: American Mathematical Soc.
ISBN: 0821889834
Category : Mathematics
Languages : en
Pages : 614

Get Book Here

Book Description
This volume resulted from the conference A Celebration of Algebraic Geometry, which was held at Harvard University from August 25-28, 2011, in honor of Joe Harris' 60th birthday. Harris is famous around the world for his lively textbooks and enthusiastic teaching, as well as for his seminal research contributions. The articles are written in this spirit: clear, original, engaging, enlivened by examples, and accessible to young mathematicians. The articles in this volume focus on the moduli space of curves and more general varieties, commutative algebra, invariant theory, enumerative geometry both classical and modern, rationally connected and Fano varieties, Hodge theory and abelian varieties, and Calabi-Yau and hyperkähler manifolds. Taken together, they present a comprehensive view of the long frontier of current knowledge in algebraic geometry. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Combinatorial Reciprocity Theorems

Combinatorial Reciprocity Theorems PDF Author: Matthias Beck
Publisher: American Mathematical Soc.
ISBN: 147042200X
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.

Combinatorial Convexity

Combinatorial Convexity PDF Author: Imre Bárány
Publisher: American Mathematical Soc.
ISBN: 1470467097
Category : Education
Languages : en
Pages : 148

Get Book Here

Book Description
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Carathéodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Carathéodory, and the (p,q) (p,q) theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory. The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.