Author: Mark Brian Tischler
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Aircraft and Rotorcraft System Identification
Author: Mark Brian Tischler
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Publisher: AIAA Education
ISBN: 9781600868207
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Although many books have been written on the theory of system identification, few are available that provide a complete engineering treatment of system identification and how to successfully apply it to flight vehicles. This book presents proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, from small uncrewed aerial vehicles (UAVs) to large manned aircraft/rotorcraft.
Identification Modeling and Characteristics of Miniature Rotorcraft
Author: Bernard Mettler
Publisher: Springer Science & Business Media
ISBN: 1475737858
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
Identification Modeling and Characteristics of Miniature Rotorcraft introduces an approach to developing a simple and effective linear parameterized model of vehicle dynamics using the CIFERâ identification tool created by the Army/NASA Rotorcraft Division. It also presents the first application of the advanced control system optimization tool CONDUITâ to systematically and efficiently tune control laws for a model-scale UAV helicopter against multiple and competing dynamic response criteria. Identification Modeling and Characteristics of Miniature Rotorcraft presents the detailed account of how the theory was developed, the experimentation performed, and how the results were used. This book will serve as a basic and illustrative guide for all students that are interested in developing autonomous flying helicopters.
Publisher: Springer Science & Business Media
ISBN: 1475737858
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
Identification Modeling and Characteristics of Miniature Rotorcraft introduces an approach to developing a simple and effective linear parameterized model of vehicle dynamics using the CIFERâ identification tool created by the Army/NASA Rotorcraft Division. It also presents the first application of the advanced control system optimization tool CONDUITâ to systematically and efficiently tune control laws for a model-scale UAV helicopter against multiple and competing dynamic response criteria. Identification Modeling and Characteristics of Miniature Rotorcraft presents the detailed account of how the theory was developed, the experimentation performed, and how the results were used. This book will serve as a basic and illustrative guide for all students that are interested in developing autonomous flying helicopters.
Rotorcraft System Identification
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 304
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 304
Book Description
Practical Methods for Aircraft and Rotorcraft Flight Control Design
Author: Mark Brian Tischler
Publisher:
ISBN: 9781624104435
Category : Airplanes
Languages : en
Pages : 0
Book Description
Reducing the theoretical methods of flight control to design practice, Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach compiles the authors' extensive experience and lessons learned into a single comprehensive resource for both academics and working flight control engineers.
Publisher:
ISBN: 9781624104435
Category : Airplanes
Languages : en
Pages : 0
Book Description
Reducing the theoretical methods of flight control to design practice, Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach compiles the authors' extensive experience and lessons learned into a single comprehensive resource for both academics and working flight control engineers.
Aircraft System Identification
Author: Eugene Morelli
Publisher: Sunflyte Enterprises
ISBN: 9780997430615
Category : Technology & Engineering
Languages : en
Pages : 618
Book Description
This book provides a comprehensive overview of both the theoretical underpinnings and the practical application of aircraft modeling based on experimental data also known as aircraft system identification. Much of the material presented comes from the authors own extensive research and teaching activities at the NASA Langley Research Center, and is based on real-world applications of system identification to aircraft. The book uses actual flight-test and wind-tunnel data for case studies and examples, and is a valuable resource for researchers and practicing engineers, as well as a textbook for postgraduate and senior-level courses. [...] The methods and algorithms explained in the book are implemented in a NASA software toolbox called SIDPAC (System IDentification Programs for AirCraft). SIDPAC is written in MATLAB®, and is available by request from NASA Langley Research Center. SIDPAC is composed of many different tools that implement a wide variety of approaches explained fully in the book. These tools can be readily applied to solve aircraft system identification problems.
Publisher: Sunflyte Enterprises
ISBN: 9780997430615
Category : Technology & Engineering
Languages : en
Pages : 618
Book Description
This book provides a comprehensive overview of both the theoretical underpinnings and the practical application of aircraft modeling based on experimental data also known as aircraft system identification. Much of the material presented comes from the authors own extensive research and teaching activities at the NASA Langley Research Center, and is based on real-world applications of system identification to aircraft. The book uses actual flight-test and wind-tunnel data for case studies and examples, and is a valuable resource for researchers and practicing engineers, as well as a textbook for postgraduate and senior-level courses. [...] The methods and algorithms explained in the book are implemented in a NASA software toolbox called SIDPAC (System IDentification Programs for AirCraft). SIDPAC is written in MATLAB®, and is available by request from NASA Langley Research Center. SIDPAC is composed of many different tools that implement a wide variety of approaches explained fully in the book. These tools can be readily applied to solve aircraft system identification problems.
Flight Test System Identification
Author: Roger Larsson
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326
Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.
Publisher: Linköping University Electronic Press
ISBN: 9176850706
Category : Science
Languages : en
Pages : 326
Book Description
With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.
Unmanned Rotorcraft Systems
Author: Guowei Cai
Publisher: Springer Science & Business Media
ISBN: 0857296353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.
Publisher: Springer Science & Business Media
ISBN: 0857296353
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
ROBOT2013: First Iberian Robotics Conference
Author: Manuel A. Armada
Publisher: Springer Science & Business Media
ISBN: 3319034138
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
This book contains the proceedings of the ROBOT 2013: FIRST IBERIAN ROBOTICS CONFERENCE and it can be said that included both state of the art and more practical presentations dealing with implementation problems, support technologies and future applications. A growing interest in Assistive Robotics, Agricultural Robotics, Field Robotics, Grasping and Dexterous Manipulation, Humanoid Robots, Intelligent Systems and Robotics, Marine Robotics, has been demonstrated by the very relevant number of contributions. Moreover, ROBOT2013 incorporates a special session on Legal and Ethical Aspects in Robotics that is becoming a topic of key relevance. This Conference was held in Madrid (28-29 November 2013), organized by the Sociedad Española para la Investigación y Desarrollo en Robótica (SEIDROB) and by the Centre for Automation and Robotics - CAR (Universidad Politécnica de Madrid (UPM) and Consejo Superior de Investigaciones Científicas (CSIC)), along with the co-operation of Grupo Temático de Robótica CEA-GTRob, "Sociedade Portuguesa de Robotica" (SPR), "Asociación Española de Promoción de la Investigación en Agentes Físicos" (RedAF), and partially supported by "Comunidad de Madrid under RoboCity2030 Programme".
Publisher: Springer Science & Business Media
ISBN: 3319034138
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
This book contains the proceedings of the ROBOT 2013: FIRST IBERIAN ROBOTICS CONFERENCE and it can be said that included both state of the art and more practical presentations dealing with implementation problems, support technologies and future applications. A growing interest in Assistive Robotics, Agricultural Robotics, Field Robotics, Grasping and Dexterous Manipulation, Humanoid Robots, Intelligent Systems and Robotics, Marine Robotics, has been demonstrated by the very relevant number of contributions. Moreover, ROBOT2013 incorporates a special session on Legal and Ethical Aspects in Robotics that is becoming a topic of key relevance. This Conference was held in Madrid (28-29 November 2013), organized by the Sociedad Española para la Investigación y Desarrollo en Robótica (SEIDROB) and by the Centre for Automation and Robotics - CAR (Universidad Politécnica de Madrid (UPM) and Consejo Superior de Investigaciones Científicas (CSIC)), along with the co-operation of Grupo Temático de Robótica CEA-GTRob, "Sociedade Portuguesa de Robotica" (SPR), "Asociación Española de Promoción de la Investigación en Agentes Físicos" (RedAF), and partially supported by "Comunidad de Madrid under RoboCity2030 Programme".
Steady Aircraft Flight and Performance
Author: N. Harris McClamroch
Publisher: Princeton University Press
ISBN: 1400839068
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
This undergraduate textbook offers a unique introduction to steady flight and performance for fixed-wing aircraft from a twenty-first-century flight systems perspective. Emphasizing the interplay between mathematics and engineering, it fully explains the fundamentals of aircraft flight and develops the basic algebraic equations needed to obtain the conditions for gliding flight, level flight, climbing and descending flight, and turning flight. It covers every aspect of flight performance, including maximum and minimum air speed, maximum climb rate, minimum turn radius, flight ceiling, maximum range, and maximum endurance. Steady Aircraft Flight and Performance features in-depth case studies of an executive jet and a general aviation propeller-driven aircraft, and uses MATLAB to compute and illustrate numerous flight performance measures and flight envelopes for each. Requiring only sophomore-level calculus and physics, it also includes a section on translational flight dynamics that makes a clear connection between steady flight and flight dynamics, thereby providing a bridge to further study. Offers the best introduction to steady aircraft flight and performance Provides a comprehensive treatment of the full range of steady flight conditions Covers steady flight performance and flight envelopes, including maximum and minimum air speed, maximum climb rate, minimum turn radius, and flight ceiling Uses mathematics and engineering to explain aircraft flight Features case studies of actual aircraft, illustrated using MATLAB Seamlessly bridges steady flight and translational flight dynamics
Publisher: Princeton University Press
ISBN: 1400839068
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
This undergraduate textbook offers a unique introduction to steady flight and performance for fixed-wing aircraft from a twenty-first-century flight systems perspective. Emphasizing the interplay between mathematics and engineering, it fully explains the fundamentals of aircraft flight and develops the basic algebraic equations needed to obtain the conditions for gliding flight, level flight, climbing and descending flight, and turning flight. It covers every aspect of flight performance, including maximum and minimum air speed, maximum climb rate, minimum turn radius, flight ceiling, maximum range, and maximum endurance. Steady Aircraft Flight and Performance features in-depth case studies of an executive jet and a general aviation propeller-driven aircraft, and uses MATLAB to compute and illustrate numerous flight performance measures and flight envelopes for each. Requiring only sophomore-level calculus and physics, it also includes a section on translational flight dynamics that makes a clear connection between steady flight and flight dynamics, thereby providing a bridge to further study. Offers the best introduction to steady aircraft flight and performance Provides a comprehensive treatment of the full range of steady flight conditions Covers steady flight performance and flight envelopes, including maximum and minimum air speed, maximum climb rate, minimum turn radius, and flight ceiling Uses mathematics and engineering to explain aircraft flight Features case studies of actual aircraft, illustrated using MATLAB Seamlessly bridges steady flight and translational flight dynamics