Agile Machine Learning with DataRobot

Agile Machine Learning with DataRobot PDF Author: Bipin Chadha
Publisher: Packt Publishing Ltd
ISBN: 1801078645
Category : Computers
Languages : en
Pages : 345

Get Book Here

Book Description
Leverage DataRobot's enterprise AI platform and automated decision intelligence to extract business value from data Key FeaturesGet well-versed with DataRobot features using real-world examplesUse this all-in-one platform to build, monitor, and deploy ML models for handling the entire production life cycleMake use of advanced DataRobot capabilities to programmatically build and deploy a large number of ML modelsBook Description DataRobot enables data science teams to become more efficient and productive. This book helps you to address machine learning (ML) challenges with DataRobot's enterprise platform, enabling you to extract business value from data and rapidly create commercial impact for your organization. You'll begin by learning how to use DataRobot's features to perform data prep and cleansing tasks automatically. The book then covers best practices for building and deploying ML models, along with challenges faced while scaling them to handle complex business problems. Moving on, you'll perform exploratory data analysis (EDA) tasks to prepare your data to build ML models and ways to interpret results. You'll also discover how to analyze the model's predictions and turn them into actionable insights for business users. Next, you'll create model documentation for internal as well as compliance purposes and learn how the model gets deployed as an API. In addition, you'll find out how to operationalize and monitor the model's performance. Finally, you'll work with examples on time series forecasting, NLP, image processing, MLOps, and more using advanced DataRobot capabilities. By the end of this book, you'll have learned to use DataRobot's AutoML and MLOps features to scale ML model building by avoiding repetitive tasks and common errors. What you will learnUnderstand and solve business problems using DataRobotUse DataRobot to prepare your data and perform various data analysis tasks to start building modelsDevelop robust ML models and assess their results correctly before deploymentExplore various DataRobot functions and outputs to help you understand the models and select the one that best solves the business problemAnalyze a model's predictions and turn them into actionable insights for business usersUnderstand how DataRobot helps in governing, deploying, and maintaining ML modelsWho this book is for This book is for data scientists, data analysts, and data enthusiasts looking for a practical guide to building and deploying robust machine learning models using DataRobot. Experienced data scientists will also find this book helpful for rapidly exploring, building, and deploying a broader range of models. The book assumes a basic understanding of machine learning.

Enhancing Business Communications and Collaboration Through Data Science Applications

Enhancing Business Communications and Collaboration Through Data Science Applications PDF Author: Geada, Nuno
Publisher: IGI Global
ISBN: 1668467887
Category : Business & Economics
Languages : en
Pages : 280

Get Book Here

Book Description
Digital evolution has become increasingly present in our lives, whether on cellphones, computers, watches, or other appliances. As a result of the wide access we have to the digital world, the amount of data generated daily is vast. This density of information generated at every moment can be the insight needed for the success of an organization. Much is said about data-based decision-making to generate the best results. The new capabilities of data intelligence unleashed by the emergence of cloud computing and artificial intelligence make it one of the most promising areas of digital transformation change management. Enhancing Business Communications and Collaboration Through Data Science Applications provides relevant theoretical frameworks and the latest empirical research findings in the area. It is written for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. Covering topics such as data science, online business communication, and user-centered design, this premier reference source is an ideal resource for business managers and leaders, entrepreneurs, data scientists, data analysts, sociologists, students and educators of higher education, librarians, researchers, and academicians.

Business Analytics

Business Analytics PDF Author: Richard Vidgen
Publisher: Bloomsbury Publishing
ISBN: 1350304778
Category : Business & Economics
Languages : en
Pages : 445

Get Book Here

Book Description
This exciting new textbook offers an accessible, business-focused overview of the key theoretical concepts underpinning modern data analytics. It provides engaging and practical advice on using the key software tools, including SAS Visual Analytics, R and DataRobot, that are used in organisations to help make effective data-driven decisions. Combining theory with hands-on practical examples, this essential text includes cutting edge coverage of new areas of interest including social media analytics, design thinking and the ethical implications of using big data. A wealth of learning features including exercises, cases, online resources and data sets help students to develop analytic problem-solving skills. With its management perspective on analytics and its coverage of a range of popular software tools, this is an ideal essential text for upper-level undergraduate, postgraduate and MBA students. It is also ideal for practitioners wanting to understand the broader organisational context of big data analysis and to engage critically with the tools and techniques of business analytics.

Practical DataOps

Practical DataOps PDF Author: Harvinder Atwal
Publisher: Apress
ISBN: 1484251040
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. What You Will LearnDevelop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products Who This Book Is For Data science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production.

Automated Machine Learning with AutoKeras

Automated Machine Learning with AutoKeras PDF Author: Luis Sobrecueva
Publisher: Packt Publishing Ltd
ISBN: 1800561814
Category : Computers
Languages : en
Pages : 194

Get Book Here

Book Description
Create better and easy-to-use deep learning models with AutoKeras Key FeaturesDesign and implement your own custom machine learning models using the features of AutoKerasLearn how to use AutoKeras for techniques such as classification, regression, and sentiment analysisGet familiar with advanced concepts as multi-modal, multi-task, and search space customizationBook Description AutoKeras is an AutoML open-source software library that provides easy access to deep learning models. If you are looking to build deep learning model architectures and perform parameter tuning automatically using AutoKeras, then this book is for you. This book teaches you how to develop and use state-of-the-art AI algorithms in your projects. It begins with a high-level introduction to automated machine learning, explaining all the concepts required to get started with this machine learning approach. You will then learn how to use AutoKeras for image and text classification and regression. As you make progress, you'll discover how to use AutoKeras to perform sentiment analysis on documents. This book will also show you how to implement a custom model for topic classification with AutoKeras. Toward the end, you will explore advanced concepts of AutoKeras such as working with multi-modal data and multi-task, customizing the model with AutoModel, and visualizing experiment results using AutoKeras Extensions. By the end of this machine learning book, you will be able to confidently use AutoKeras to design your own custom machine learning models in your company. What you will learnSet up a deep learning workstation with TensorFlow and AutoKerasAutomate a machine learning pipeline with AutoKerasCreate and implement image and text classifiers and regressors using AutoKerasUse AutoKeras to perform sentiment analysis of a text, classifying it as negative or positiveLeverage AutoKeras to classify documents by topicsMake the most of AutoKeras by using its most powerful extensionsWho this book is for This book is for machine learning and deep learning enthusiasts who want to apply automated ML techniques to their projects. Prior basic knowledge of Python programming and machine learning is expected to get the most out of this book.

Development Methodologies for Big Data Analytics Systems

Development Methodologies for Big Data Analytics Systems PDF Author: Manuel Mora
Publisher: Springer Nature
ISBN: 3031409566
Category : Technology & Engineering
Languages : en
Pages : 289

Get Book Here

Book Description
This book presents research in big data analytics (BDA) for business of all sizes. The authors analyze problems presented in the application of BDA in some businesses through the study of development methodologies based on the three approaches – 1) plan-driven, 2) agile and 3) hybrid lightweight. The authors first describe BDA systems and how they emerged with the convergence of Statistics, Computer Science, and Business Intelligent Analytics with the practical aim to provide concepts, models, methods and tools required for exploiting the wide variety, volume, and velocity of available business internal and external data - i.e. Big Data – and provide decision-making value to decision-makers. The book presents high-quality conceptual and empirical research-oriented chapters on plan-driven, agile, and hybrid lightweight development methodologies and relevant supporting topics for BDA systems suitable to be used for large-, medium-, and small-sized business organizations.

e-HRM

e-HRM PDF Author: Mohan Thite
Publisher: Routledge
ISBN: 1351698710
Category : Business & Economics
Languages : en
Pages : 404

Get Book Here

Book Description
As with other parts of business, technology is having a profound effect on the world of work and management of human resources. Technology is a key enabler for faster, cheaper and better delivery of HR services and in some cases can have a transformational as well as unintended negative effect. Designed for the digital era, e-HRM is one of the first textbooks on these developments. It incorporates the most current and important HR technology related topics in four distinct parts under one umbrella, written by leading scholars and practitioners drawn from across the world. All the chapters have a uniform structure and pay equal attention to theory and practice with an applied focus. Learning resources of the book include chapter-wide learning objectives, case studies, debates on related burning issues, and the companion website includes lecture slides and a question bank.

The Robotic Process Automation Handbook

The Robotic Process Automation Handbook PDF Author: Tom Taulli
Publisher: Apress
ISBN: 1484257294
Category : Computers
Languages : en
Pages : 359

Get Book Here

Book Description
While Robotic Process Automation (RPA) has been around for about 20 years, it has hit an inflection point because of the convergence of cloud computing, big data and AI. This book shows you how to leverage RPA effectively in your company to automate repetitive and rules-based processes, such as scheduling, inputting/transferring data, cut and paste, filling out forms, and search. Using practical aspects of implementing the technology (based on case studies and industry best practices), you’ll see how companies have been able to realize substantial ROI (Return On Investment) with their implementations, such as by lessening the need for hiring or outsourcing. By understanding the core concepts of RPA, you’ll also see that the technology significantly increases compliance – leading to fewer issues with regulations – and minimizes costly errors. RPA software revenues have recently soared by over 60 percent, which is the fastest ramp in the tech industry, and they are expected to exceed $1 billion by the end of 2019. It is generally seamless with legacy IT environments, making it easier for companies to pursue a strategy of digital transformation and can even be a gateway to AI. The Robotic Process Automation Handbook puts everything you need to know into one place to be a part of this wave. What You'll Learn Develop the right strategy and planDeal with resistance and fears from employeesTake an in-depth look at the leading RPA systems, including where they are most effective, the risks and the costsEvaluate an RPA system Who This Book Is For IT specialists and managers at mid-to-large companies

The AI Product Manager's Handbook

The AI Product Manager's Handbook PDF Author: Irene Bratsis
Publisher: Packt Publishing Ltd
ISBN: 1804617334
Category : Computers
Languages : en
Pages : 250

Get Book Here

Book Description
Master the skills required to become an AI product manager and drive the successful development and deployment of AI products to deliver value to your organization. Purchase of the print or Kindle book includes a free PDF eBook. Key Features Build products that leverage AI for the common good and commercial success Take macro data and use it to show your customers you’re a source of truth Best practices and common pitfalls that impact companies while developing AI product Book DescriptionProduct managers working with artificial intelligence will be able to put their knowledge to work with this practical guide to applied AI. This book covers everything you need to know to drive product development and growth in the AI industry. From understanding AI and machine learning to developing and launching AI products, it provides the strategies, techniques, and tools you need to succeed. The first part of the book focuses on establishing a foundation of the concepts most relevant to maintaining AI pipelines. The next part focuses on building an AI-native product, and the final part guides you in integrating AI into existing products. You’ll learn about the types of AI, how to integrate AI into a product or business, and the infrastructure to support the exhaustive and ambitious endeavor of creating AI products or integrating AI into existing products. You’ll gain practical knowledge of managing AI product development processes, evaluating and optimizing AI models, and navigating complex ethical and legal considerations associated with AI products. With the help of real-world examples and case studies, you’ll stay ahead of the curve in the rapidly evolving field of AI and ML. By the end of this book, you’ll have understood how to navigate the world of AI from a product perspective.What you will learn Build AI products for the future using minimal resources Identify opportunities where AI can be leveraged to meet business needs Collaborate with cross-functional teams to develop and deploy AI products Analyze the benefits and costs of developing products using ML and DL Explore the role of ethics and responsibility in dealing with sensitive data Understand performance and efficacy across verticals Who this book is for This book is for product managers and other professionals interested in incorporating AI into their products. Foundational knowledge of AI is expected. If you understand the importance of AI as the rising fourth industrial revolution, this book will help you surf the tidal wave of digital transformation and change across industries.

Business Analytics

Business Analytics PDF Author: Richard Vidgen
Publisher: Red Globe Press
ISBN: 1352007258
Category : Business & Economics
Languages : en
Pages : 0

Get Book Here

Book Description
This exciting new textbook offers an accessible, business-focused overview of the key theoretical concepts underpinning modern data analytics. It provides engaging and practical advice on using the key software tools, including SAS Visual Analytics, R and DataRobot, that are used in organisations to help make effective data-driven decisions. Combining theory with hands-on practical examples, this essential text includes cutting edge coverage of new areas of interest including social media analytics, design thinking and the ethical implications of using big data. A wealth of learning features including exercises, cases, online resources and data sets help students to develop analytic problem-solving skills. With its management perspective on analytics and its coverage of a range of popular software tools, this is an ideal essential text for upper-level undergraduate, postgraduate and MBA students. It is also ideal for practitioners wanting to understand the broader organisational context of big data analysis and to engage critically with the tools and techniques of business analytics.