Author: Friedrich Kratochwil
Publisher: Routledge
ISBN: 1000401642
Category : Political Science
Languages : en
Pages : 295
Book Description
This book’s key purpose is to contribute to the ongoing "theoretical" discussion in the field of international relations (IR) concerning the status of grand theories. However, it also has a wider, critical mission: to challenge mainstream social science and its dominant methodology, as well as the unfettered optimism that the problem of social order can be solved by the "application" of scientific knowledge to our practical problems. The author uses rigorous philosophical analysis to focus on the unexamined assumptions that form the bedrock of many contemporary scholars in IR and demonstrates the unavailability of a universal "scientific" procedure for finding the facts, when we face practical choices and issues of social reproduction. This book will be of interest to upper-level students of IR, sociology, history, and philosophy of science; it will also speak to students of security, foreign policy making, migration, and political economy, in addressing the basis of their attitudes in thinking about the world and the role of scholarship.
After Theory, Before Big Data
Author: Friedrich Kratochwil
Publisher: Routledge
ISBN: 1000401642
Category : Political Science
Languages : en
Pages : 295
Book Description
This book’s key purpose is to contribute to the ongoing "theoretical" discussion in the field of international relations (IR) concerning the status of grand theories. However, it also has a wider, critical mission: to challenge mainstream social science and its dominant methodology, as well as the unfettered optimism that the problem of social order can be solved by the "application" of scientific knowledge to our practical problems. The author uses rigorous philosophical analysis to focus on the unexamined assumptions that form the bedrock of many contemporary scholars in IR and demonstrates the unavailability of a universal "scientific" procedure for finding the facts, when we face practical choices and issues of social reproduction. This book will be of interest to upper-level students of IR, sociology, history, and philosophy of science; it will also speak to students of security, foreign policy making, migration, and political economy, in addressing the basis of their attitudes in thinking about the world and the role of scholarship.
Publisher: Routledge
ISBN: 1000401642
Category : Political Science
Languages : en
Pages : 295
Book Description
This book’s key purpose is to contribute to the ongoing "theoretical" discussion in the field of international relations (IR) concerning the status of grand theories. However, it also has a wider, critical mission: to challenge mainstream social science and its dominant methodology, as well as the unfettered optimism that the problem of social order can be solved by the "application" of scientific knowledge to our practical problems. The author uses rigorous philosophical analysis to focus on the unexamined assumptions that form the bedrock of many contemporary scholars in IR and demonstrates the unavailability of a universal "scientific" procedure for finding the facts, when we face practical choices and issues of social reproduction. This book will be of interest to upper-level students of IR, sociology, history, and philosophy of science; it will also speak to students of security, foreign policy making, migration, and political economy, in addressing the basis of their attitudes in thinking about the world and the role of scholarship.
Big Data
Author: Viktor Mayer-Schönberger
Publisher: Houghton Mifflin Harcourt
ISBN: 0544002695
Category : Business & Economics
Languages : en
Pages : 257
Book Description
A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.
Publisher: Houghton Mifflin Harcourt
ISBN: 0544002695
Category : Business & Economics
Languages : en
Pages : 257
Book Description
A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.
Social Theory after the Internet
Author: Ralph Schroeder
Publisher: UCL Press
ISBN: 178735122X
Category : Social Science
Languages : en
Pages : 210
Book Description
The internet has fundamentally transformed society in the past 25 years, yet existing theories of mass or interpersonal communication do not work well in understanding a digital world. Nor has this understanding been helped by disciplinary specialization and a continual focus on the latest innovations. Ralph Schroeder takes a longer-term view, synthesizing perspectives and findings from various social science disciplines in four countries: the United States, Sweden, India and China. His comparison highlights, among other observations, that smartphones are in many respects more important than PC-based internet uses. Social Theory after the Internet focuses on everyday uses and effects of the internet, including information seeking and big data, and explains how the internet has gone beyond traditional media in, for example, enabling Donald Trump and Narendra Modi to come to power. Schroeder puts forward a sophisticated theory of the role of the internet, and how both technological and social forces shape its significance. He provides a sweeping and penetrating study, theoretically ambitious and at the same time always empirically grounded.The book will be of great interest to students and scholars of digital media and society, the internet and politics, and the social implications of big data.
Publisher: UCL Press
ISBN: 178735122X
Category : Social Science
Languages : en
Pages : 210
Book Description
The internet has fundamentally transformed society in the past 25 years, yet existing theories of mass or interpersonal communication do not work well in understanding a digital world. Nor has this understanding been helped by disciplinary specialization and a continual focus on the latest innovations. Ralph Schroeder takes a longer-term view, synthesizing perspectives and findings from various social science disciplines in four countries: the United States, Sweden, India and China. His comparison highlights, among other observations, that smartphones are in many respects more important than PC-based internet uses. Social Theory after the Internet focuses on everyday uses and effects of the internet, including information seeking and big data, and explains how the internet has gone beyond traditional media in, for example, enabling Donald Trump and Narendra Modi to come to power. Schroeder puts forward a sophisticated theory of the role of the internet, and how both technological and social forces shape its significance. He provides a sweeping and penetrating study, theoretically ambitious and at the same time always empirically grounded.The book will be of great interest to students and scholars of digital media and society, the internet and politics, and the social implications of big data.
Big Data
Author: James Warren
Publisher: Simon and Schuster
ISBN: 1638351104
Category : Computers
Languages : en
Pages : 498
Book Description
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Publisher: Simon and Schuster
ISBN: 1638351104
Category : Computers
Languages : en
Pages : 498
Book Description
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Data Science in Theory and Practice
Author: Maria Cristina Mariani
Publisher: John Wiley & Sons
ISBN: 1119674689
Category : Mathematics
Languages : en
Pages : 404
Book Description
DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Publisher: John Wiley & Sons
ISBN: 1119674689
Category : Mathematics
Languages : en
Pages : 404
Book Description
DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Applications of Big Data in Healthcare
Author: Ashish Khanna
Publisher: Academic Press
ISBN: 0128204516
Category : Science
Languages : en
Pages : 311
Book Description
Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data. - Provides case studies that illustrate the business processes underlying the use of big data and deep learning health analytics to improve health care delivery - Supplies readers with a foundation for further specialized study in clinical analysis and data management - Includes links to websites, videos, articles and other online content to expand and support the primary learning objectives for each major section of the book
Publisher: Academic Press
ISBN: 0128204516
Category : Science
Languages : en
Pages : 311
Book Description
Applications of Big Data in Healthcare: Theory and Practice begins with the basics of Big Data analysis and introduces the tools, processes and procedures associated with Big Data analytics. The book unites healthcare with Big Data analysis and uses the advantages of the latter to solve the problems faced by the former. The authors present the challenges faced by the healthcare industry, including capturing, storing, searching, sharing and analyzing data. This book illustrates the challenges in the applications of Big Data and suggests ways to overcome them, with a primary emphasis on data repositories, challenges, and concepts for data scientists, engineers and clinicians. The applications of Big Data have grown tremendously within the past few years and its growth can not only be attributed to its competence to handle large data streams but also to its abilities to find insights from complex, noisy, heterogeneous, longitudinal and voluminous data. The main objectives of Big Data in the healthcare sector is to come up with ways to provide personalized healthcare to patients by taking into account the enormous amounts of already existing data. - Provides case studies that illustrate the business processes underlying the use of big data and deep learning health analytics to improve health care delivery - Supplies readers with a foundation for further specialized study in clinical analysis and data management - Includes links to websites, videos, articles and other online content to expand and support the primary learning objectives for each major section of the book
Big Data Analytics in Supply Chain Management
Author: Iman Rahimi
Publisher: CRC Press
ISBN: 1000326918
Category : Computers
Languages : en
Pages : 211
Book Description
In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
Publisher: CRC Press
ISBN: 1000326918
Category : Computers
Languages : en
Pages : 211
Book Description
In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
Entertainment Science
Author: Thorsten Hennig-Thurau
Publisher: Springer
ISBN: 3319892924
Category : Business & Economics
Languages : en
Pages : 879
Book Description
The entertainment industry has long been dominated by legendary screenwriter William Goldman’s “Nobody-Knows-Anything” mantra, which argues that success is the result of managerial intuition and instinct. This book builds the case that combining such intuition with data analytics and rigorous scholarly knowledge provides a source of sustainable competitive advantage – the same recipe for success that is behind the rise of firms such as Netflix and Spotify, but has also fueled Disney’s recent success. Unlocking a large repertoire of scientific studies by business scholars and entertainment economists, the authors identify essential factors, mechanisms, and methods that help a new entertainment product succeed. The book thus offers a timely alternative to “Nobody-Knows” decision-making in the digital era: while coupling a good idea with smart data analytics and entertainment theory cannot guarantee a hit, it systematically and substantially increases the probability of success in the entertainment industry. Entertainment Science is poised to inspire fresh new thinking among managers, students of entertainment, and scholars alike. Thorsten Hennig-Thurau and Mark B. Houston – two of our finest scholars in the area of entertainment marketing – have produced a definitive research-based compendium that cuts across various branches of the arts to explain the phenomena that provide consumption experiences to capture the hearts and minds of audiences. Morris B. Holbrook, W. T. Dillard Professor Emeritus of Marketing, Columbia University Entertainment Science is a must-read for everyone working in the entertainment industry today, where the impact of digital and the use of big data can’t be ignored anymore. Hennig-Thurau and Houston are the scientific frontrunners of knowledge that the industry urgently needs. Michael Kölmel, media entrepreneur and Honorary Professor of Media Economics at University of Leipzig Entertainment Science’s winning combination of creativity, theory, and data analytics offers managers in the creative industries and beyond a novel, compelling, and comprehensive approach to support their decision-making. This ground-breaking book marks the dawn of a new Golden Age of fruitful conversation between entertainment scholars, managers, and artists. Allègre Hadida, Associate Professor in Strategy, University of Cambridge
Publisher: Springer
ISBN: 3319892924
Category : Business & Economics
Languages : en
Pages : 879
Book Description
The entertainment industry has long been dominated by legendary screenwriter William Goldman’s “Nobody-Knows-Anything” mantra, which argues that success is the result of managerial intuition and instinct. This book builds the case that combining such intuition with data analytics and rigorous scholarly knowledge provides a source of sustainable competitive advantage – the same recipe for success that is behind the rise of firms such as Netflix and Spotify, but has also fueled Disney’s recent success. Unlocking a large repertoire of scientific studies by business scholars and entertainment economists, the authors identify essential factors, mechanisms, and methods that help a new entertainment product succeed. The book thus offers a timely alternative to “Nobody-Knows” decision-making in the digital era: while coupling a good idea with smart data analytics and entertainment theory cannot guarantee a hit, it systematically and substantially increases the probability of success in the entertainment industry. Entertainment Science is poised to inspire fresh new thinking among managers, students of entertainment, and scholars alike. Thorsten Hennig-Thurau and Mark B. Houston – two of our finest scholars in the area of entertainment marketing – have produced a definitive research-based compendium that cuts across various branches of the arts to explain the phenomena that provide consumption experiences to capture the hearts and minds of audiences. Morris B. Holbrook, W. T. Dillard Professor Emeritus of Marketing, Columbia University Entertainment Science is a must-read for everyone working in the entertainment industry today, where the impact of digital and the use of big data can’t be ignored anymore. Hennig-Thurau and Houston are the scientific frontrunners of knowledge that the industry urgently needs. Michael Kölmel, media entrepreneur and Honorary Professor of Media Economics at University of Leipzig Entertainment Science’s winning combination of creativity, theory, and data analytics offers managers in the creative industries and beyond a novel, compelling, and comprehensive approach to support their decision-making. This ground-breaking book marks the dawn of a new Golden Age of fruitful conversation between entertainment scholars, managers, and artists. Allègre Hadida, Associate Professor in Strategy, University of Cambridge
Social Theory after the Internet
Author: Ralph Schroeder
Publisher: UCL Press
ISBN: 1787351238
Category : Social Science
Languages : en
Pages : 210
Book Description
The internet has fundamentally transformed society in the past 25 years, yet existing theories of mass or interpersonal communication do not work well in understanding a digital world. Nor has this understanding been helped by disciplinary specialization and a continual focus on the latest innovations. Ralph Schroeder takes a longer-term view, synthesizing perspectives and findings from various social science disciplines in four countries: the United States, Sweden, India and China. His comparison highlights, among other observations, that smartphones are in many respects more important than PC-based internet uses. Social Theory after the Internet focuses on everyday uses and effects of the internet, including information seeking and big data, and explains how the internet has gone beyond traditional media in, for example, enabling Donald Trump and Narendra Modi to come to power. Schroeder puts forward a sophisticated theory of the role of the internet, and how both technological and social forces shape its significance. He provides a sweeping and penetrating study, theoretically ambitious and at the same time always empirically grounded.The book will be of great interest to students and scholars of digital media and society, the internet and politics, and the social implications of big data.
Publisher: UCL Press
ISBN: 1787351238
Category : Social Science
Languages : en
Pages : 210
Book Description
The internet has fundamentally transformed society in the past 25 years, yet existing theories of mass or interpersonal communication do not work well in understanding a digital world. Nor has this understanding been helped by disciplinary specialization and a continual focus on the latest innovations. Ralph Schroeder takes a longer-term view, synthesizing perspectives and findings from various social science disciplines in four countries: the United States, Sweden, India and China. His comparison highlights, among other observations, that smartphones are in many respects more important than PC-based internet uses. Social Theory after the Internet focuses on everyday uses and effects of the internet, including information seeking and big data, and explains how the internet has gone beyond traditional media in, for example, enabling Donald Trump and Narendra Modi to come to power. Schroeder puts forward a sophisticated theory of the role of the internet, and how both technological and social forces shape its significance. He provides a sweeping and penetrating study, theoretically ambitious and at the same time always empirically grounded.The book will be of great interest to students and scholars of digital media and society, the internet and politics, and the social implications of big data.
Big Data – BigData 2018
Author: Francis Y. L. Chin
Publisher: Springer
ISBN: 3319943014
Category : Computers
Languages : en
Pages : 387
Book Description
This volume constitutes the proceedings of the 7th International Conference on BIGDATA 2018, held as Part of SCF 2018 in Seattle, WA, USA in June 2018. The 22 full papers together with 10 short papers published in this volume were carefully reviewed and selected from 97 submissions. They are organized in topical sections such as Data analysis, data as a service, services computing, data conversion, data storage, data centers, dataflow architectures, data compression, data exchange, data modeling, databases, and data management.
Publisher: Springer
ISBN: 3319943014
Category : Computers
Languages : en
Pages : 387
Book Description
This volume constitutes the proceedings of the 7th International Conference on BIGDATA 2018, held as Part of SCF 2018 in Seattle, WA, USA in June 2018. The 22 full papers together with 10 short papers published in this volume were carefully reviewed and selected from 97 submissions. They are organized in topical sections such as Data analysis, data as a service, services computing, data conversion, data storage, data centers, dataflow architectures, data compression, data exchange, data modeling, databases, and data management.