Author: D. G. Northcott
Publisher: Cambridge University Press
ISBN: 052122909X
Category : Mathematics
Languages : en
Pages : 297
Book Description
In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups.
Introduction to Affine Group Schemes
Author: W.C. Waterhouse
Publisher: Springer Science & Business Media
ISBN: 1461262178
Category : Mathematics
Languages : en
Pages : 167
Book Description
Ah Love! Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme.
Publisher: Springer Science & Business Media
ISBN: 1461262178
Category : Mathematics
Languages : en
Pages : 167
Book Description
Ah Love! Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme.
Affine Sets and Affine Groups
Author: D. G. Northcott
Publisher: Cambridge University Press
ISBN: 052122909X
Category : Mathematics
Languages : en
Pages : 297
Book Description
In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups.
Publisher: Cambridge University Press
ISBN: 052122909X
Category : Mathematics
Languages : en
Pages : 297
Book Description
In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups.
Affine and Projective Geometry
Author: M. K. Bennett
Publisher: John Wiley & Sons
ISBN: 1118030826
Category : Mathematics
Languages : en
Pages : 251
Book Description
An important new perspective on AFFINE AND PROJECTIVEGEOMETRY This innovative book treats math majors and math education studentsto a fresh look at affine and projective geometry from algebraic,synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninetyillustrations, and numerous examples and exercises, coveringmaterial for two semesters of upper-level undergraduatemathematics. The first part of the book deals with the correlationbetween synthetic geometry and linear algebra. In the second part,geometry is used to introduce lattice theory, and the bookculminates with the fundamental theorem of projectivegeometry. While emphasizing affine geometry and its basis in Euclideanconcepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with itsnontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to provetheorems in another * Provides opportunities for further investigation of mathematicsby various means, including historical references at the ends ofchapters Throughout, the text explores geometry's correlation to algebra inways that are meant to foster inquiry and develop mathematicalinsights whether or not one has a background in algebra. Theinsight offered is particularly important for prospective secondaryteachers who must major in the subject they teach to fulfill thelicensing requirements of many states. Affine and ProjectiveGeometry's broad scope and its communicative tone make it an idealchoice for all students and professionals who would like to furthertheir understanding of things mathematical.
Publisher: John Wiley & Sons
ISBN: 1118030826
Category : Mathematics
Languages : en
Pages : 251
Book Description
An important new perspective on AFFINE AND PROJECTIVEGEOMETRY This innovative book treats math majors and math education studentsto a fresh look at affine and projective geometry from algebraic,synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninetyillustrations, and numerous examples and exercises, coveringmaterial for two semesters of upper-level undergraduatemathematics. The first part of the book deals with the correlationbetween synthetic geometry and linear algebra. In the second part,geometry is used to introduce lattice theory, and the bookculminates with the fundamental theorem of projectivegeometry. While emphasizing affine geometry and its basis in Euclideanconcepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with itsnontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to provetheorems in another * Provides opportunities for further investigation of mathematicsby various means, including historical references at the ends ofchapters Throughout, the text explores geometry's correlation to algebra inways that are meant to foster inquiry and develop mathematicalinsights whether or not one has a background in algebra. Theinsight offered is particularly important for prospective secondaryteachers who must major in the subject they teach to fulfill thelicensing requirements of many states. Affine and ProjectiveGeometry's broad scope and its communicative tone make it an idealchoice for all students and professionals who would like to furthertheir understanding of things mathematical.
The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups
Author: Jian-Yi Shi
Publisher: Springer
ISBN: 3540397809
Category : Mathematics
Languages : en
Pages : 318
Book Description
Publisher: Springer
ISBN: 3540397809
Category : Mathematics
Languages : en
Pages : 318
Book Description
Metric Affine Geometry
Author: Ernst Snapper
Publisher: Elsevier
ISBN: 1483269337
Category : Mathematics
Languages : en
Pages : 456
Book Description
Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.
Publisher: Elsevier
ISBN: 1483269337
Category : Mathematics
Languages : en
Pages : 456
Book Description
Metric Affine Geometry focuses on linear algebra, which is the source for the axiom systems of all affine and projective geometries, both metric and nonmetric. This book is organized into three chapters. Chapter 1 discusses nonmetric affine geometry, while Chapter 2 reviews inner products of vector spaces. The metric affine geometry is treated in Chapter 3. This text specifically discusses the concrete model for affine space, dilations in terms of coordinates, parallelograms, and theorem of Desargues. The inner products in terms of coordinates and similarities of affine spaces are also elaborated. The prerequisites for this publication are a course in linear algebra and an elementary course in modern algebra that includes the concepts of group, normal subgroup, and quotient group. This monograph is suitable for students and aspiring geometry high school teachers.
Geometric Methods and Applications
Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584
Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584
Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.
Linear Algebra and Geometry
Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3642309941
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Publisher: Springer Science & Business Media
ISBN: 3642309941
Category : Mathematics
Languages : en
Pages : 536
Book Description
This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory and continues with vector spaces, linear transformations, inner product spaces, and the theory of affine and projective spaces. The book also includes some subjects that are naturally related to linear algebra but are usually not covered in such courses: exterior algebras, non-Euclidean geometry, topological properties of projective spaces, theory of quadrics (in affine and projective spaces), decomposition of finite abelian groups, and finitely generated periodic modules (similar to Jordan normal forms of linear operators). Mathematical reasoning, theorems, and concepts are illustrated with numerous examples from various fields of mathematics, including differential equations and differential geometry, as well as from mechanics and physics.
Lie Algebras of Finite and Affine Type
Author: Roger William Carter
Publisher: Cambridge University Press
ISBN: 9780521851381
Category : Mathematics
Languages : en
Pages : 662
Book Description
This book provides a thorough but relaxed mathematical treatment of Lie algebras.
Publisher: Cambridge University Press
ISBN: 9780521851381
Category : Mathematics
Languages : en
Pages : 662
Book Description
This book provides a thorough but relaxed mathematical treatment of Lie algebras.
Mathematics and Technology
Author: Christiane Rousseau
Publisher: Springer Science & Business Media
ISBN: 0387692169
Category : Mathematics
Languages : en
Pages : 580
Book Description
This book introduces the student to numerous modern applications of mathematics in technology. The authors write with clarity and present the mathematics in a clear and straightforward way making it an interesting and easy book to read. Numerous exercises at the end of every section provide practice and reinforce the material in the chapter. An engaging quality of this book is that the authors also present the mathematical material in a historical context and not just the practical one. Mathematics and Technology is intended for undergraduate students in mathematics, instructors and high school teachers. Additionally, its lack of calculus centricity as well as a clear indication of the more difficult topics and relatively advanced references make it suitable for any curious individual with a decent command of high school math.
Publisher: Springer Science & Business Media
ISBN: 0387692169
Category : Mathematics
Languages : en
Pages : 580
Book Description
This book introduces the student to numerous modern applications of mathematics in technology. The authors write with clarity and present the mathematics in a clear and straightforward way making it an interesting and easy book to read. Numerous exercises at the end of every section provide practice and reinforce the material in the chapter. An engaging quality of this book is that the authors also present the mathematical material in a historical context and not just the practical one. Mathematics and Technology is intended for undergraduate students in mathematics, instructors and high school teachers. Additionally, its lack of calculus centricity as well as a clear indication of the more difficult topics and relatively advanced references make it suitable for any curious individual with a decent command of high school math.
Groups of Lie Type and Their Geometries
Author: William M. Kantor
Publisher: Cambridge University Press
ISBN: 052146790X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Silk Hope, NC is a buoyant and moving parable in which two good women find, among the hidden, forgotten virtues of the past, a sustenance to carry them into the future.
Publisher: Cambridge University Press
ISBN: 052146790X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Silk Hope, NC is a buoyant and moving parable in which two good women find, among the hidden, forgotten virtues of the past, a sustenance to carry them into the future.