Author: Yucheng Liu
Publisher: Bentham Science Publishers
ISBN: 1681083051
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This comprehensive volume presents a wide spectrum of information about the design, analysis and manufacturing of aerospace structures and materials. Readers will find an interesting compilation of reviews covering several topics such as structural dynamics and impact simulation, acoustic and vibration testing and analysis, fatigue analysis and life optimization, reversing design methodology, non-destructive evaluation, remotely piloted helicopters, surface enhancement of aerospace alloys, manufacturing of metal matrix composites, applications of carbon nanotubes in aircraft material design, carbon fiber reinforcements, variable stiffness composites, aircraft material selection, and much more. This volume is a key reference for graduates undertaking advanced courses in materials science and aeronautical engineering as well as researchers and professional engineers seeking to increase their understanding of aircraft material selection and design.
Aerospace Structures and Materials
Author: Yucheng Liu
Publisher: Bentham Science Publishers
ISBN: 1681083051
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This comprehensive volume presents a wide spectrum of information about the design, analysis and manufacturing of aerospace structures and materials. Readers will find an interesting compilation of reviews covering several topics such as structural dynamics and impact simulation, acoustic and vibration testing and analysis, fatigue analysis and life optimization, reversing design methodology, non-destructive evaluation, remotely piloted helicopters, surface enhancement of aerospace alloys, manufacturing of metal matrix composites, applications of carbon nanotubes in aircraft material design, carbon fiber reinforcements, variable stiffness composites, aircraft material selection, and much more. This volume is a key reference for graduates undertaking advanced courses in materials science and aeronautical engineering as well as researchers and professional engineers seeking to increase their understanding of aircraft material selection and design.
Publisher: Bentham Science Publishers
ISBN: 1681083051
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
This comprehensive volume presents a wide spectrum of information about the design, analysis and manufacturing of aerospace structures and materials. Readers will find an interesting compilation of reviews covering several topics such as structural dynamics and impact simulation, acoustic and vibration testing and analysis, fatigue analysis and life optimization, reversing design methodology, non-destructive evaluation, remotely piloted helicopters, surface enhancement of aerospace alloys, manufacturing of metal matrix composites, applications of carbon nanotubes in aircraft material design, carbon fiber reinforcements, variable stiffness composites, aircraft material selection, and much more. This volume is a key reference for graduates undertaking advanced courses in materials science and aeronautical engineering as well as researchers and professional engineers seeking to increase their understanding of aircraft material selection and design.
Introduction to Aerospace Materials
Author: Adrian P Mouritz
Publisher: Elsevier
ISBN: 0857095153
Category : Technology & Engineering
Languages : en
Pages : 637
Book Description
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications.The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters.With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. - Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications - Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures - Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys
Publisher: Elsevier
ISBN: 0857095153
Category : Technology & Engineering
Languages : en
Pages : 637
Book Description
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications.The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters.With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. - Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications - Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures - Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys
Manufacturing Technology for Aerospace Structural Materials
Author: Flake C Campbell Jr
Publisher: Elsevier
ISBN: 0080462359
Category : Technology & Engineering
Languages : en
Pages : 617
Book Description
The rapidly-expanding aerospace industry is a prime developer and user of advanced metallic and composite materials in its many products. This book concentrates on the manufacturing technology necessary to fabricate and assemble these materials into useful and effective structural components. Detailed chapters are dedicated to each key metal or alloy used in the industry, including aluminum, magnesium, beryllium, titanium, high strength steels, and superalloys. In addition the book deals with composites, adhesive bonding and presents the essentials of structural assembly. This book will be an important resource for all those involved in aerospace design and construction, materials science and engineering, as well as for metallurgists and those working in related sectors such as the automotive and mass transport industries. Flake Campbell Jr has over thirty seven years experience in the aerospace industry and is currently Senior Technical Fellow at the Boeing Phantom Works in Missouri, USA.* All major aerospace structural materials covered: metals and composites* Focus on details of manufacture and use* Author has huge experience in aerospace industry* A must-have book for materials engineers, design and structural engineers, metallurgical engineers and manufacturers for the aerospace industry
Publisher: Elsevier
ISBN: 0080462359
Category : Technology & Engineering
Languages : en
Pages : 617
Book Description
The rapidly-expanding aerospace industry is a prime developer and user of advanced metallic and composite materials in its many products. This book concentrates on the manufacturing technology necessary to fabricate and assemble these materials into useful and effective structural components. Detailed chapters are dedicated to each key metal or alloy used in the industry, including aluminum, magnesium, beryllium, titanium, high strength steels, and superalloys. In addition the book deals with composites, adhesive bonding and presents the essentials of structural assembly. This book will be an important resource for all those involved in aerospace design and construction, materials science and engineering, as well as for metallurgists and those working in related sectors such as the automotive and mass transport industries. Flake Campbell Jr has over thirty seven years experience in the aerospace industry and is currently Senior Technical Fellow at the Boeing Phantom Works in Missouri, USA.* All major aerospace structural materials covered: metals and composites* Focus on details of manufacture and use* Author has huge experience in aerospace industry* A must-have book for materials engineers, design and structural engineers, metallurgical engineers and manufacturers for the aerospace industry
Composite Materials for Aircraft Structures
Author: Alan A. Baker
Publisher: AIAA
ISBN: 9781600860409
Category : Airplanes
Languages : en
Pages : 626
Book Description
Publisher: AIAA
ISBN: 9781600860409
Category : Airplanes
Languages : en
Pages : 626
Book Description
High Performance Materials in Aerospace
Author: Harvey M. Flower
Publisher: Springer Science & Business Media
ISBN: 9401106851
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
Aerospace presents an extremely challenging environment for structural materials and the development of new, or improved, materials: processes for material and for component production are the subject of continuous research activity. It is in the nature of high performance materials that the steps of material and of component production should not be considered in isolation from one another. Indeed, in some cases, the very process of material production may also incorporate part or all of the component production itself and, at the very least, will influence the choice of material/component production method to be employed. How ever, the developments currently taking place are to be discovered largely within the confines of specialist conferences or books each dedicated to perhaps a single element of the overall process. In this book contributors, experts drawn from both academia and the aerospace industry, have joined together to combine their individual knowledge to examine high performance aerospace materials in terms of their production, structure, properties and applications. The central interrelationships between the development of structure through the production route and between structure and the properties exhibited in the final component are considered. It is hoped that the book will be of interest to students of aeronautical engineering and of materials science, together with those working within the aerospace industry. Harvey M. Flower Imperial College 1 Design requirements for aerospace structural materials C. J. Peel and P. J. Gregson 1.
Publisher: Springer Science & Business Media
ISBN: 9401106851
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
Aerospace presents an extremely challenging environment for structural materials and the development of new, or improved, materials: processes for material and for component production are the subject of continuous research activity. It is in the nature of high performance materials that the steps of material and of component production should not be considered in isolation from one another. Indeed, in some cases, the very process of material production may also incorporate part or all of the component production itself and, at the very least, will influence the choice of material/component production method to be employed. How ever, the developments currently taking place are to be discovered largely within the confines of specialist conferences or books each dedicated to perhaps a single element of the overall process. In this book contributors, experts drawn from both academia and the aerospace industry, have joined together to combine their individual knowledge to examine high performance aerospace materials in terms of their production, structure, properties and applications. The central interrelationships between the development of structure through the production route and between structure and the properties exhibited in the final component are considered. It is hoped that the book will be of interest to students of aeronautical engineering and of materials science, together with those working within the aerospace industry. Harvey M. Flower Imperial College 1 Design requirements for aerospace structural materials C. J. Peel and P. J. Gregson 1.
Structural Health Monitoring (SHM) in Aerospace Structures
Author: Fuh-Gwo Yuan
Publisher: Woodhead Publishing
ISBN: 0081001584
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet's operating costs. The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts. Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures. This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists. - Provides key information on the potential of SHM in reducing maintenance and repair costs - Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area - Encompasses chapters on smart materials such as electroactive polymers and optical fibers
Publisher: Woodhead Publishing
ISBN: 0081001584
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet's operating costs. The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts. Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures. This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists. - Provides key information on the potential of SHM in reducing maintenance and repair costs - Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area - Encompasses chapters on smart materials such as electroactive polymers and optical fibers
Polymer Composites in the Aerospace Industry
Author: P. E. Irving
Publisher: Elsevier
ISBN: 0857099183
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Polymer composites are increasingly used in aerospace applications due to properties such as strength and durability compared to weight. Edited by two leading authorities in the field, this book summarises key recent research on design, manufacture and performance of composite components for aerospace structures. Part one reviews the design and manufacture of different types of composite component. Part two discusses aspects of performance such as stiffness, strength, fatigue, impact and blast behaviour, response to temperature and humidity as well as non-destructive testing and monitoring techniques.
Publisher: Elsevier
ISBN: 0857099183
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
Polymer composites are increasingly used in aerospace applications due to properties such as strength and durability compared to weight. Edited by two leading authorities in the field, this book summarises key recent research on design, manufacture and performance of composite components for aerospace structures. Part one reviews the design and manufacture of different types of composite component. Part two discusses aspects of performance such as stiffness, strength, fatigue, impact and blast behaviour, response to temperature and humidity as well as non-destructive testing and monitoring techniques.
Aerospace Materials and Applications
Author: Biliyar N. Bhat
Publisher:
ISBN: 9781624104886
Category : Aeronautics
Languages : en
Pages : 0
Book Description
"The present volume is focused on documenting the novel processing, fabrication, characterization, and testing approaches that are unique to aerospace materials/structures/systems"--Preface.
Publisher:
ISBN: 9781624104886
Category : Aeronautics
Languages : en
Pages : 0
Book Description
"The present volume is focused on documenting the novel processing, fabrication, characterization, and testing approaches that are unique to aerospace materials/structures/systems"--Preface.
Structural Analysis
Author: O. A. Bauchau
Publisher: Springer Science & Business Media
ISBN: 9048125162
Category : Technology & Engineering
Languages : en
Pages : 943
Book Description
The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity and basic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams and plates. Particular attention is devoted to the analysis of thin-walled beams under bending shearing and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods. This teaching tool based on practical situations and thorough methodology should prove valuable to both lecturers and students of structural analysis in engineering worldwide. This is a textbook for teaching structural analysis of aerospace structures. It can be used for 3rd and 4th year students in aerospace engineering, as well as for 1st and 2nd year graduate students in aerospace and mechanical engineering.
Publisher: Springer Science & Business Media
ISBN: 9048125162
Category : Technology & Engineering
Languages : en
Pages : 943
Book Description
The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity and basic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams and plates. Particular attention is devoted to the analysis of thin-walled beams under bending shearing and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods. This teaching tool based on practical situations and thorough methodology should prove valuable to both lecturers and students of structural analysis in engineering worldwide. This is a textbook for teaching structural analysis of aerospace structures. It can be used for 3rd and 4th year students in aerospace engineering, as well as for 1st and 2nd year graduate students in aerospace and mechanical engineering.
Welding and Joining of Aerospace Materials
Author: Mahesh Chaturvedi
Publisher: Elsevier
ISBN: 0857095161
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Welding and joining techniques play an essential role in both the manufacture and in-service repair of aerospace structures and components, and these techniques become more advanced as new, complex materials are developed. Welding and joining of aerospace materials provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials.Part one opens with a chapter on recently developed welding techniques for aerospace materials. The next few chapters focus on different types of welding such as inertia friction, laser and hybrid laser-arc welding. The final chapter in part one discusses the important issue of heat affected zone cracking in welded superalloys. Part two covers other joining techniques, including chapters on riveting, composite-to-metal bonding, diffusion bonding and recent improvements in bonding metals. Part two concludes with a chapter focusing on the use of high-temperature brazing in aerospace engineering. Finally, an appendix to the book covers the important issue of linear friction welding.With its distinguished editor and international team of contributors, Welding and joining of aerospace materials is an essential reference for engineers and designers in the aerospace, materials and welding and joining industries, as well as companies and other organisations operating in these sectors and all those with an academic research interest in the subject. - Provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials - Discusses the important issue of heat affected zone cracking in welded superalloys - Covers many joining techniques, including riveting, composite-to-metal bonding and diffusion bonding
Publisher: Elsevier
ISBN: 0857095161
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
Welding and joining techniques play an essential role in both the manufacture and in-service repair of aerospace structures and components, and these techniques become more advanced as new, complex materials are developed. Welding and joining of aerospace materials provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials.Part one opens with a chapter on recently developed welding techniques for aerospace materials. The next few chapters focus on different types of welding such as inertia friction, laser and hybrid laser-arc welding. The final chapter in part one discusses the important issue of heat affected zone cracking in welded superalloys. Part two covers other joining techniques, including chapters on riveting, composite-to-metal bonding, diffusion bonding and recent improvements in bonding metals. Part two concludes with a chapter focusing on the use of high-temperature brazing in aerospace engineering. Finally, an appendix to the book covers the important issue of linear friction welding.With its distinguished editor and international team of contributors, Welding and joining of aerospace materials is an essential reference for engineers and designers in the aerospace, materials and welding and joining industries, as well as companies and other organisations operating in these sectors and all those with an academic research interest in the subject. - Provides an in-depth review of different techniques for joining metallic and non-metallic aerospace materials - Discusses the important issue of heat affected zone cracking in welded superalloys - Covers many joining techniques, including riveting, composite-to-metal bonding and diffusion bonding