Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Get Book Here

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Get Book Here

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Semi-Supervised Learning

Semi-Supervised Learning PDF Author: Olivier Chapelle
Publisher: MIT Press
ISBN: 0262514125
Category : Computers
Languages : en
Pages : 525

Get Book Here

Book Description
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Adversarial Machine Learning

Adversarial Machine Learning PDF Author: Anthony D. Joseph
Publisher: Cambridge University Press
ISBN: 1107043468
Category : Computers
Languages : en
Pages : 341

Get Book Here

Book Description
This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.

Deep Learning on Graphs

Deep Learning on Graphs PDF Author: Yao Ma
Publisher: Cambridge University Press
ISBN: 1108831745
Category : Computers
Languages : en
Pages : 339

Get Book Here

Book Description
A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.

Data Classification

Data Classification PDF Author: Charu C. Aggarwal
Publisher: CRC Press
ISBN: 1498760589
Category : Business & Economics
Languages : en
Pages : 710

Get Book Here

Book Description
Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlyi

Introduction to Graph Neural Networks

Introduction to Graph Neural Networks PDF Author: Zhiyuan Zhiyuan Liu
Publisher: Springer Nature
ISBN: 3031015878
Category : Computers
Languages : en
Pages : 109

Get Book Here

Book Description
Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool. This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.

Graph Theory, Combinatorics, and Algorithms

Graph Theory, Combinatorics, and Algorithms PDF Author: Y. Alavi
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages : 426

Get Book Here

Book Description


Graph Data Mining

Graph Data Mining PDF Author: Qi Xuan
Publisher: Springer Nature
ISBN: 981162609X
Category : Computers
Languages : en
Pages : 256

Get Book Here

Book Description
Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic – the security of graph data mining – and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.

Concepts and Techniques of Graph Neural Networks

Concepts and Techniques of Graph Neural Networks PDF Author: Kumar, Vinod
Publisher: IGI Global
ISBN: 1668469057
Category : Computers
Languages : en
Pages : 267

Get Book Here

Book Description
Recent advancements in graph neural networks have expanded their capacities and expressive power. Furthermore, practical applications have begun to emerge in a variety of fields including recommendation systems, fake news detection, traffic prediction, molecular structure in chemistry, antibacterial discovery physics simulations, and more. As a result, a boom of research at the juncture of graph theory and deep learning has revolutionized many areas of research. However, while graph neural networks have drawn a lot of attention, they still face many challenges when it comes to applying them to other domains, from a conceptual understanding of methodologies to scalability and interpretability in a real system. Concepts and Techniques of Graph Neural Networks provides a stepwise discussion, an exhaustive literature review, detailed analysis and discussion, rigorous experimentation results, and application-oriented approaches that are demonstrated with respect to applications of graph neural networks. The book also develops the understanding of concepts and techniques of graph neural networks and establishes the familiarity of different real applications in various domains for graph neural networks. Covering key topics such as graph data, social networks, deep learning, and graph clustering, this premier reference source is ideal for industry professionals, researchers, scholars, academicians, practitioners, instructors, and students.

Database Systems for Advanced Applications

Database Systems for Advanced Applications PDF Author: Arnab Bhattacharya
Publisher: Springer Nature
ISBN: 3031001230
Category : Computers
Languages : en
Pages : 788

Get Book Here

Book Description
The three-volume set LNCS 13245, 13246 and 13247 constitutes the proceedings of the 26th International Conference on Database Systems for Advanced Applications, DASFAA 2022, held online, in April 2021. The total of 72 full papers, along with 76 short papers, are presented in this three-volume set was carefully reviewed and selected from 543 submissions. Additionally, 13 industrial papers, 9 demo papers and 2 PhD consortium papers are included. The conference was planned to take place in Hyderabad, India, but it was held virtually due to the COVID-19 pandemic.