MATLAB for Machine Learning

MATLAB for Machine Learning PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399390
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.

MATLAB for Machine Learning

MATLAB for Machine Learning PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399390
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
Extract patterns and knowledge from your data in easy way using MATLAB About This Book Get your first steps into machine learning with the help of this easy-to-follow guide Learn regression, clustering, classification, predictive analytics, artificial neural networks and more with MATLAB Understand how your data works and identify hidden layers in the data with the power of machine learning. Who This Book Is For This book is for data analysts, data scientists, students, or anyone who is looking to get started with machine learning and want to build efficient data processing and predicting applications. A mathematical and statistical background will really help in following this book well. What You Will Learn Learn the introductory concepts of machine learning. Discover different ways to transform data using SAS XPORT, import and export tools, Explore the different types of regression techniques such as simple & multiple linear regression, ordinary least squares estimation, correlations and how to apply them to your data. Discover the basics of classification methods and how to implement Naive Bayes algorithm and Decision Trees in the Matlab environment. Uncover how to use clustering methods like hierarchical clustering to grouping data using the similarity measures. Know how to perform data fitting, pattern recognition, and clustering analysis with the help of MATLAB Neural Network Toolbox. Learn feature selection and extraction for dimensionality reduction leading to improved performance. In Detail MATLAB is the language of choice for many researchers and mathematics experts for machine learning. This book will help you build a foundation in machine learning using MATLAB for beginners. You'll start by getting your system ready with t he MATLAB environment for machine learning and you'll see how to easily interact with the Matlab workspace. We'll then move on to data cleansing, mining and analyzing various data types in machine learning and you'll see how to display data values on a plot. Next, you'll get to know about the different types of regression techniques and how to apply them to your data using the MATLAB functions. You'll understand the basic concepts of neural networks and perform data fitting, pattern recognition, and clustering analysis. Finally, you'll explore feature selection and extraction techniques for dimensionality reduction for performance improvement. At the end of the book, you will learn to put it all together into real-world cases covering major machine learning algorithms and be comfortable in performing machine learning with MATLAB. Style and approach The book takes a very comprehensive approach to enhance your understanding of machine learning using MATLAB. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work.

Deep Learning and Dynamic Neural Networks With Matlab

Deep Learning and Dynamic Neural Networks With Matlab PDF Author: Perez C.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781974063505
Category :
Languages : en
Pages : 166

Get Book Here

Book Description
Deep learning is a branch of machine learning that teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. Deep learning is especially suited for image recognition, which is important for solving problems such as facial recognition, motion detection, and many advanced driver assistance technologies such as autonomous driving, lane detection, pedestrian detection, and autonomous parking. Neural Network Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks. The Neural Network Toolbox software uses the network object to store all of the information that defines a neural network. After a neural network has been created, it needs to be configured and then trained. Configuration involves arranging the network so that it is compatible with the problem you want to solve, as defined by sample data. After the network has been configured, the adjustable network parameters (called weights and biases) need to be tuned, so that the network performance is optimized. This tuning process is referred to as training the network. Configuration and training require that the network be provided with example data. This topic shows how to format the data for presentation to the network. It also explains network configuration and the two forms of network training: incremental training and batch training. Neural networks can be classified into dynamic and static categories. Static (feedforward) networks have no feedback elements and contain no delays; the output is calculated directly from the input through feedforward connections. In dynamic networks, the output depends not only on the current input to the network, but also on the current or previous inputs, outputs, or states of the network. This book develops the following topics: - "Workflow for Neural Network Design" - "Neural Network Architectures" - "Deep Learning in MATLAB" - "Deep Network Using Autoencoders" - "Convolutional Neural Networks" - "Multilayer Neural Networks" - "Dynamic Neural Networks" - "Time Series Neural Networks" - "Multistep Neural Network Prediction"

Deep Learning Using MATLAB. Neural Network Applications

Deep Learning Using MATLAB. Neural Network Applications PDF Author: K. Taylor
Publisher: Createspace Independent Publishing Platform
ISBN: 9781543144567
Category :
Languages : en
Pages : 334

Get Book Here

Book Description
Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data. Deep learning is part of a broader family of machine learning methods based on learning representations of data. One of the promises of deep learning is replacing handcrafted features with efficient algorithms for unsupervised or semi-supervised feature learning and hierarchical feature extraction. Research in this area attempts to make better representations and create models to learn these representations from large-scale unlabeled data. Some of the representations are inspired by advances in neuroscience and are loosely based on interpretation of information processing and communication patterns in a nervous system, such as neural coding which attempts to define a relationship between various stimuli and associated neuronal responses in the brain. MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: -Deep learning, including convolutional neural networks and autoencoders -Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) -Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) -Unsupervised learning algorithms, including self-organizing maps and competitive layers -Apps for data-fitting, pattern recognition, and clustering -Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance -Simulink(R) blocks for building and evaluating neural networks and for control systems applications This book develops deep learning, including convolutional neural networks and autoencoders and other types of advanced neural networks

Computational Methods for Deep Learning

Computational Methods for Deep Learning PDF Author: Wei Qi Yan
Publisher: Springer Nature
ISBN: 3030610810
Category : Computers
Languages : en
Pages : 134

Get Book Here

Book Description
Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations. Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms. As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers. This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision. Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.

ADVANCED TOPICS IN NEURAL NETWORKS WITH MATLAB. PARALLEL COMPUTING, OPTIMIZE AND TRAINING

ADVANCED TOPICS IN NEURAL NETWORKS WITH MATLAB. PARALLEL COMPUTING, OPTIMIZE AND TRAINING PDF Author: PEREZ C.
Publisher: CESAR PEREZ
ISBN: 1974082040
Category : Computers
Languages : en
Pages : 78

Get Book Here

Book Description
Neural networks are inherently parallel algorithms. Multicore CPUs, graphical processing units (GPUs), and clusters of computers with multiple CPUs and GPUs can take advantage of this parallelism. Parallel Computing Toolbox, when used in conjunction with Neural Network Toolbox, enables neural network training and simulation to take advantage of each mode of parallelism. Parallel Computing Toolbox allows neural network training and simulation to run across multiple CPU cores on a single PC, or across multiple CPUs on multiple computers on a network using MATLAB Distributed Computing Server. Using multiple cores can speed calculations. Using multiple computers can allow you to solve problems using data sets too big to fit in the RAM of a single computer. The only limit to problem size is the total quantity of RAM available across all computers. Distributed and GPU computing can be combined to run calculations across multiple CPUs and/or GPUs on a single computer, or on a cluster with MATLAB Distributed Computing Server. It is desirable to determine the optimal regularization parameters in an automated fashion. One approach to this process is the Bayesian framework. In this framework, the weights and biases of the network are assumed to be random variables with specified distributions. The regularization parameters are related to the unknown variances associated with these distributions. You can then estimate these parameters using statistical techniques. It is very difficult to know which training algorithm will be the fastest for a given problem. It depends on many factors, including the complexity of the problem, the number of data points in the training set, the number of weights and biases in the network, the error goal, and whether the network is being used for pattern recognition (discriminant analysis) or function approximation (regression). This book compares the various training algorithms. One of the problems that occur during neural network training is called overfitting. The error on the training set is driven to a very small value, but when new data is presented to the network the error is large. The network has memorized the training examples, but it has not learned to generalize to new situations. This book develops the following topics: Neural Networks with Parallel and GPU Computing Deep Learning Optimize Neural Network Training Speed and Memory Improve Neural Network Generalization and Avoid Overfitting Create and Train Custom Neural Network Architectures Deploy Training of Neural Networks Perceptron Neural Networks Linear Neural Networks Hopfield Neural Network Neural Network Object Reference Neural Network Simulink Block Library Deploy Neural Network Simulink Diagrams

MATLAB Deep Learning

MATLAB Deep Learning PDF Author: Phil Kim
Publisher: Apress
ISBN: 1484228456
Category : Computers
Languages : en
Pages : 162

Get Book Here

Book Description
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Manual for the implementation of neural networks in MATLAB

Manual for the implementation of neural networks in MATLAB PDF Author: Michael Kuhn
Publisher: GRIN Verlag
ISBN: 3638445518
Category : Business & Economics
Languages : en
Pages : 45

Get Book Here

Book Description
Bachelor Thesis from the year 2005 in the subject Business economics - Information Management, grade: 2,0, Neisse University Görlitz (Neisse University), language: English, abstract: This bachelor thesis presents a manual about the implementation of neural networks in the software environment MATLAB. The thesis can be divided into four parts. After an introduction into the thesis, the theoretical background of neural networks and MATLAB is explained in two chapters. The third part is the description how to implement networks in a general way and with examples, too. The manual is created for the “Master Course of Computer Studies” at the University of Applied Science Zittau/Görlitz. Due to the fact, that this manual is a bachelor thesis just a small theoretical and practical overview about neural networks can be given.

Deep Learning with MATLAB: Neural Networks Design and Dynamic Neural Networks

Deep Learning with MATLAB: Neural Networks Design and Dynamic Neural Networks PDF Author: A. Vidales
Publisher: Independently Published
ISBN: 9781792848018
Category : Computers
Languages : en
Pages : 242

Get Book Here

Book Description
Deep Learning Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks.Neural networks can be classified into dynamic and static categories. Static (feedforward) networks have no feedback elements and contain no delays; the output is calculated directly from the input through feedforward connections. In dynamic networks, the output depends not only on the current input to the network, but also on the current or previous inputs, outputs, or states of the network.Dynamic networks can be divided into two categories: those that have only feedforward connections, and those that have feedback, or recurrent, connections. To understand the difference between static, feedforward-dynamic, and recurrent-dynamic networks, create some networks and see how they respond to an input sequence.All the specifi dynamic networks discussed so far have either been focused networks,with the dynamics only at the input layer, or feedforward networks. The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic network,with feedback connections enclosing several layers of the network. The NARX model isbased on the linear ARX model, which is commonly used in time-series modeling.

Advanced Control Engineering

Advanced Control Engineering PDF Author: Roland Burns
Publisher: Butterworth-Heinemann
ISBN: 9780750651004
Category : Technology & Engineering
Languages : en
Pages : 158

Get Book Here

Book Description
Advanced Control Engineering provides a complete course in control engineering for undergraduates of all technical disciplines. Included are real-life case studies, numerous problems, and accompanying MatLab programs.

Deep Learning with Matlab. Deep Networks

Deep Learning with Matlab. Deep Networks PDF Author: A. Vidales
Publisher: Independently Published
ISBN: 9781792790485
Category :
Languages : en
Pages : 232

Get Book Here

Book Description
Deep learning is a branch of machine learning that teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. Deep learning is especially suited for image recognition, which is important for solving problems such as facial recognition, motion detection, and many advanced driver assistance technologies such as autonomous driving, lane detection, pedestrian detection, and autonomous parking.Deep Learning Toolbox provides simple MATLAB commands for creating and interconnecting the layers of a deep neural network. Examples and pretrained networks make it easy to use MATLAB for deep learning, even without knowledge of advanced computer vision algorithms or neural networks.Deep learning uses neural networks to learn useful representations of features directly from data. Neural networks combine multiple nonlinear processing layers, using simple elements operating in parallel and inspired by biological nervous systems. Deep learning models can achieve state-of-the-art accuracy in object classification, sometimes exceeding human-level performance.