Advances in Numerical Methods

Advances in Numerical Methods PDF Author: Nikos Mastorakis
Publisher: Springer Science & Business Media
ISBN: 0387764836
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.

Advances in Numerical Methods

Advances in Numerical Methods PDF Author: Nikos Mastorakis
Publisher: Springer Science & Business Media
ISBN: 0387764836
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.

Advances in Numerical Analysis Emphasizing Interval Data

Advances in Numerical Analysis Emphasizing Interval Data PDF Author: Tofigh Allahviranloo
Publisher: CRC Press
ISBN: 1000540251
Category : Technology & Engineering
Languages : en
Pages : 219

Get Book Here

Book Description
Numerical analysis forms a cornerstone of numeric computing and optimization, in particular recently, interval numerical computations play an important role in these topics. The interest of researchers in computations involving uncertain data, namely interval data opens new avenues in coping with real-world problems and deliver innovative and efficient solutions. This book provides the basic theoretical foundations of numerical methods, discusses key technique classes, explains improvements and improvements, and provides insights into recent developments and challenges. The theoretical parts of numerical methods, including the concept of interval approximation theory, are introduced and explained in detail. In general, the key features of the book include an up-to-date and focused treatise on error analysis in calculations, in particular the comprehensive and systematic treatment of error propagation mechanisms, considerations on the quality of data involved in numerical calculations, and a thorough discussion of interval approximation theory. Moreover, this book focuses on approximation theory and its development from the perspective of linear algebra, and new and regular representations of numerical integration and their solutions are enhanced by error analysis as well. The book is unique in the sense that its content and organization will cater to several audiences, in particular graduate students, researchers, and practitioners.

Advanced Numerical Methods in Applied Sciences

Advanced Numerical Methods in Applied Sciences PDF Author: Luigi Brugnano
Publisher: MDPI
ISBN: 3038976660
Category : Juvenile Nonfiction
Languages : en
Pages : 306

Get Book Here

Book Description
The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Advanced Numerical Methods for Differential Equations

Advanced Numerical Methods for Differential Equations PDF Author: Harendra Singh
Publisher: CRC Press
ISBN: 1000381080
Category : Technology & Engineering
Languages : en
Pages : 337

Get Book Here

Book Description
Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes PDF Author: Miguel Cerrolaza
Publisher: Academic Press
ISBN: 0128117192
Category : Technology & Engineering
Languages : en
Pages : 462

Get Book Here

Book Description
Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems

Advanced Numerical Simulation Methods

Advanced Numerical Simulation Methods PDF Author: Gernot Beer
Publisher: CRC Press
ISBN: 1315766310
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
This entertaining introduction to advanced numerical modeling aims to lead the reader on a journey towards theholy grail of numerical simulation, i.e. one without the requirement of mesh generation, that takes data directly from CAD programs. This hands-on book emphasizes implementation and examples of programming in a higher level language are given. Written for users of simulation software, so they can understand the benefits of this new technology and demand progress from a somewhat conservative industry. Written for software developers, so they can see that this is a technology with a big future and written for researchers, in the hope that it will attract more people to work in this field.

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF Author: Snehashish Chakraverty
Publisher: John Wiley & Sons
ISBN: 1119423422
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs

Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs PDF Author: George D. Byrne
Publisher: World Scientific
ISBN: 9789810205577
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
Ordinary differential equations (ODEs), differential-algebraic equations (DAEs) and partial differential equations (PDEs) are among the forms of mathematics most widely used in science and engineering. Each of these equation types is a focal point for international collaboration and research. This book contains papers by recognized numerical analysts who have made important contributions to the solution of differential systems in the context of realistic applications, and who now report the latest results of their work in numerical methods and software for ODEs/DAEs/PDEs. The papers address parallelization and vectorization of numerical methods, the numerical solution of ODEs/DAEs/PDEs, and the use of these numerical methods in realistic scientific and engineering applications.

Numerical Methods for Two-Point Boundary-Value Problems

Numerical Methods for Two-Point Boundary-Value Problems PDF Author: Herbert B. Keller
Publisher: Courier Dover Publications
ISBN: 0486828344
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.

Numerical Methods and Optimization

Numerical Methods and Optimization PDF Author: Éric Walter
Publisher: Springer
ISBN: 331907671X
Category : Technology & Engineering
Languages : en
Pages : 485

Get Book Here

Book Description
Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. Numerical Methods – a Consumer Guide presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to · discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; · understand the principles behind recognized algorithms used in state-of-the-art numerical software; · learn the advantages and limitations of these algorithms, to facilitate the choice of which pre-existing bricks to assemble for solving a given problem; and · acquire methods that allow a critical assessment of numerical results. Numerical Methods – a Consumer Guide will be of interest to engineers and researchers who solve problems numerically with computers or supervise people doing so, and to students of both engineering and applied mathematics.