Author: George A. Tsihrintzis
Publisher: Springer Nature
ISBN: 3030767949
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
As the 4th Industrial Revolution is restructuring human societal organization into, so-called, “Society 5.0”, the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.
Advances in Machine Learning/Deep Learning-based Technologies
Author: George A. Tsihrintzis
Publisher: Springer Nature
ISBN: 3030767949
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
As the 4th Industrial Revolution is restructuring human societal organization into, so-called, “Society 5.0”, the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.
Publisher: Springer Nature
ISBN: 3030767949
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
As the 4th Industrial Revolution is restructuring human societal organization into, so-called, “Society 5.0”, the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.
Machine Learning Paradigms
Author: Maria Virvou
Publisher: Springer
ISBN: 3030137430
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
Publisher: Springer
ISBN: 3030137430
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
Advances in Deep Learning
Author: M. Arif Wani
Publisher: Springer
ISBN: 9811367949
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.
Publisher: Springer
ISBN: 9811367949
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.
Deep Learning Applications, Volume 2
Author: M. Arif Wani
Publisher: Springer
ISBN: 9789811567582
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Publisher: Springer
ISBN: 9789811567582
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
Advanced Machine Learning Technologies and Applications
Author: Aboul-Ella Hassanien
Publisher: Springer Nature
ISBN: 3030697177
Category : Technology & Engineering
Languages : en
Pages : 1144
Book Description
This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.
Publisher: Springer Nature
ISBN: 3030697177
Category : Technology & Engineering
Languages : en
Pages : 1144
Book Description
This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.
Machine Learning and Deep Learning in Real-Time Applications
Author: Mahrishi, Mehul
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344
Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344
Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Deep Learning
Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262537559
Category : Computers
Languages : en
Pages : 298
Book Description
An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Publisher: MIT Press
ISBN: 0262537559
Category : Computers
Languages : en
Pages : 298
Book Description
An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies
Author: Vinit Kumar Gunjan
Publisher: Springer Nature
ISBN: 9811531250
Category : Technology & Engineering
Languages : en
Pages : 593
Book Description
This book highlights recent advances in Cybernetics, Machine Learning and Cognitive Science applied to Communications Engineering and Technologies, and presents high-quality research conducted by experts in this area. It provides a valuable reference guide for students, researchers and industry practitioners who want to keep abreast of the latest developments in this dynamic, exciting and interesting research field of communication engineering, driven by next-generation IT-enabled techniques. The book will also benefit practitioners whose work involves the development of communication systems using advanced cybernetics, data processing, swarm intelligence and cyber-physical systems; applied mathematicians; and developers of embedded and real-time systems. Moreover, it shares insights into applying concepts from Machine Learning, Cognitive Science, Cybernetics and other areas of artificial intelligence to wireless and mobile systems, control systems and biomedical engineering.
Publisher: Springer Nature
ISBN: 9811531250
Category : Technology & Engineering
Languages : en
Pages : 593
Book Description
This book highlights recent advances in Cybernetics, Machine Learning and Cognitive Science applied to Communications Engineering and Technologies, and presents high-quality research conducted by experts in this area. It provides a valuable reference guide for students, researchers and industry practitioners who want to keep abreast of the latest developments in this dynamic, exciting and interesting research field of communication engineering, driven by next-generation IT-enabled techniques. The book will also benefit practitioners whose work involves the development of communication systems using advanced cybernetics, data processing, swarm intelligence and cyber-physical systems; applied mathematicians; and developers of embedded and real-time systems. Moreover, it shares insights into applying concepts from Machine Learning, Cognitive Science, Cybernetics and other areas of artificial intelligence to wireless and mobile systems, control systems and biomedical engineering.
Advances in Parallel Computing Technologies and Applications
Author: D.J. Hemanth
Publisher: IOS Press
ISBN: 1643682199
Category : Computers
Languages : en
Pages : 450
Book Description
Recent developments in parallel computing mean that the use of machine learning techniques and intelligence to handle the huge volume of available data have brought the faster solutions offered by advanced technologies to various fields of application. This book presents the proceedings of the Virtual International Conference on Advances in Parallel Computing Technologies and Applications (ICAPTA 2021), hosted in Justice Basheer Ahmed Sayeed College for women (formerly "S.I.E.T Women's College"), Chennai, India, and held online as a virtual event on 15 and 16 April 2021. The aim of the conference was to provide a forum for sharing knowledge in various aspects of parallel computing in communications systems and networking, including cloud and virtualization solutions, management technologies, and vertical application areas. It also provided a platform for scientists, researchers, practitioners and academicians to present and discuss the most recent innovations and trends, as well as the concerns and practical challenges encountered in this field. Included here are 52 full length papers, selected from over 100 submissions based on the reviews and comments of subject experts. Topics covered include parallel computing in communication, machine learning intelligence for parallel computing and parallel computing for software services in theoretical and practical aspects. Providing an overview of the latest developments in the field, the book will be of interest to all those whose work involves the use of parallel computing technologies.
Publisher: IOS Press
ISBN: 1643682199
Category : Computers
Languages : en
Pages : 450
Book Description
Recent developments in parallel computing mean that the use of machine learning techniques and intelligence to handle the huge volume of available data have brought the faster solutions offered by advanced technologies to various fields of application. This book presents the proceedings of the Virtual International Conference on Advances in Parallel Computing Technologies and Applications (ICAPTA 2021), hosted in Justice Basheer Ahmed Sayeed College for women (formerly "S.I.E.T Women's College"), Chennai, India, and held online as a virtual event on 15 and 16 April 2021. The aim of the conference was to provide a forum for sharing knowledge in various aspects of parallel computing in communications systems and networking, including cloud and virtualization solutions, management technologies, and vertical application areas. It also provided a platform for scientists, researchers, practitioners and academicians to present and discuss the most recent innovations and trends, as well as the concerns and practical challenges encountered in this field. Included here are 52 full length papers, selected from over 100 submissions based on the reviews and comments of subject experts. Topics covered include parallel computing in communication, machine learning intelligence for parallel computing and parallel computing for software services in theoretical and practical aspects. Providing an overview of the latest developments in the field, the book will be of interest to all those whose work involves the use of parallel computing technologies.
Machine Learning and Artificial Intelligence
Author: A.J. Tallón-Ballesteros
Publisher: IOS Press
ISBN: 1643681370
Category : Computers
Languages : en
Pages : 482
Book Description
Machine learning and artificial intelligence are already widely applied to facilitate our daily lives, as well as scientific research, but with the world currently facing a global COVID-19 pandemic, their capacity to provide an important tool to support those searching for a way to combat the novel corona virus has never been more important. This book presents the proceedings of the International Conference on Machine Learning and Intelligent Systems (MLIS 2020), which was due to be held in Seoul, Korea, from 25-28 October 2020, but which was delivered as an online conference on the same dates due to COVID-19 restrictions. MLIS 2020 was the latest in a series of annual conferences that aim to provide a platform for exchanging knowledge about the most recent scientific and technological advances in the field of machine learning and intelligent systems. The annual conference also strengthens links within the scientific community in related research areas. The book contains 53 papers, selected from more than 160 submissions and presented at MLIS 2020. Selection was based on the results of review and scored on: originality, scientific/practical significance, compelling logical reasoning and language. Topics covered include: data mining, image processing, neural networks, human health, natural language processing, video processing, computational intelligence, expert systems, human-computer interaction, deep learning, and robotics. Offering a current overview of research and developments in machine learning and artificial intelligence, the book will be of interest to all those working in the field.
Publisher: IOS Press
ISBN: 1643681370
Category : Computers
Languages : en
Pages : 482
Book Description
Machine learning and artificial intelligence are already widely applied to facilitate our daily lives, as well as scientific research, but with the world currently facing a global COVID-19 pandemic, their capacity to provide an important tool to support those searching for a way to combat the novel corona virus has never been more important. This book presents the proceedings of the International Conference on Machine Learning and Intelligent Systems (MLIS 2020), which was due to be held in Seoul, Korea, from 25-28 October 2020, but which was delivered as an online conference on the same dates due to COVID-19 restrictions. MLIS 2020 was the latest in a series of annual conferences that aim to provide a platform for exchanging knowledge about the most recent scientific and technological advances in the field of machine learning and intelligent systems. The annual conference also strengthens links within the scientific community in related research areas. The book contains 53 papers, selected from more than 160 submissions and presented at MLIS 2020. Selection was based on the results of review and scored on: originality, scientific/practical significance, compelling logical reasoning and language. Topics covered include: data mining, image processing, neural networks, human health, natural language processing, video processing, computational intelligence, expert systems, human-computer interaction, deep learning, and robotics. Offering a current overview of research and developments in machine learning and artificial intelligence, the book will be of interest to all those working in the field.