Advances in Kernel Methods

Advances in Kernel Methods PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262194167
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
A young girl hears the story of her great-great-great-great- grandfather and his brother who came to the United States to make a better life for themselves helping to build the transcontinental railroad.

Advances in Kernel Methods

Advances in Kernel Methods PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262194167
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
A young girl hears the story of her great-great-great-great- grandfather and his brother who came to the United States to make a better life for themselves helping to build the transcontinental railroad.

Kernel Methods in Computational Biology

Kernel Methods in Computational Biology PDF Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262195096
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
A detailed overview of current research in kernel methods and their application to computational biology.

Learning with Kernels

Learning with Kernels PDF Author: Bernhard Scholkopf
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645

Get Book Here

Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Kernel Methods for Pattern Analysis

Kernel Methods for Pattern Analysis PDF Author: John Shawe-Taylor
Publisher: Cambridge University Press
ISBN: 9780521813976
Category : Computers
Languages : en
Pages : 520

Get Book Here

Book Description
Publisher Description

Kernel Methods for Remote Sensing Data Analysis

Kernel Methods for Remote Sensing Data Analysis PDF Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
ISBN: 0470749008
Category : Technology & Engineering
Languages : en
Pages : 434

Get Book Here

Book Description
Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection. Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges: Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods. Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection. Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification. Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions. This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

Digital Signal Processing with Kernel Methods

Digital Signal Processing with Kernel Methods PDF Author: Jose Luis Rojo-Alvarez
Publisher: John Wiley & Sons
ISBN: 1118611799
Category : Technology & Engineering
Languages : en
Pages : 665

Get Book Here

Book Description
A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.

Advances in Large Margin Classifiers

Advances in Large Margin Classifiers PDF Author: Alexander J. Smola
Publisher: MIT Press
ISBN: 9780262194488
Category : Computers
Languages : en
Pages : 436

Get Book Here

Book Description
The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods PDF Author: Nello Cristianini
Publisher: Cambridge University Press
ISBN: 9780521780193
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory.

Machine Learning with SVM and Other Kernel Methods

Machine Learning with SVM and Other Kernel Methods PDF Author: K.P. Soman
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120334353
Category : Computers
Languages : en
Pages : 495

Get Book Here

Book Description
Support vector machines (SVMs) represent a breakthrough in the theory of learning systems. It is a new generation of learning algorithms based on recent advances in statistical learning theory. Designed for the undergraduate students of computer science and engineering, this book provides a comprehensive introduction to the state-of-the-art algorithm and techniques in this field. It covers most of the well known algorithms supplemented with code and data. One Class, Multiclass and hierarchical SVMs are included which will help the students to solve any pattern classification problems with ease and that too in Excel. KEY FEATURES  Extensive coverage of Lagrangian duality and iterative methods for optimization  Separate chapters on kernel based spectral clustering, text mining, and other applications in computational linguistics and speech processing  A chapter on latest sequential minimization algorithms and its modifications to do online learning  Step-by-step method of solving the SVM based classification problem in Excel.  Kernel versions of PCA, CCA and ICA The CD accompanying the book includes animations on solving SVM training problem in Microsoft EXCEL and by using SVMLight software . In addition, Matlab codes are given for all the formulations of SVM along with the data sets mentioned in the exercise section of each chapter.

Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition PDF Author: Joseph Keshet
Publisher: John Wiley & Sons
ISBN: 9780470742037
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
This book discusses large margin and kernel methods for speech and speaker recognition Speech and Speaker Recognition: Large Margin and Kernel Methods is a collation of research in the recent advances in large margin and kernel methods, as applied to the field of speech and speaker recognition. It presents theoretical and practical foundations of these methods, from support vector machines to large margin methods for structured learning. It also provides examples of large margin based acoustic modelling for continuous speech recognizers, where the grounds for practical large margin sequence learning are set. Large margin methods for discriminative language modelling and text independent speaker verification are also addressed in this book. Key Features: Provides an up-to-date snapshot of the current state of research in this field Covers important aspects of extending the binary support vector machine to speech and speaker recognition applications Discusses large margin and kernel method algorithms for sequence prediction required for acoustic modeling Reviews past and present work on discriminative training of language models, and describes different large margin algorithms for the application of part-of-speech tagging Surveys recent work on the use of kernel approaches to text-independent speaker verification, and introduces the main concepts and algorithms Surveys recent work on kernel approaches to learning a similarity matrix from data This book will be of interest to researchers, practitioners, engineers, and scientists in speech processing and machine learning fields.