Author: Junjie Wu
Publisher: Springer Science & Business Media
ISBN: 3642298079
Category : Computers
Languages : en
Pages : 187
Book Description
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.
Advances in K-means Clustering
Author: Junjie Wu
Publisher: Springer Science & Business Media
ISBN: 3642298079
Category : Computers
Languages : en
Pages : 187
Book Description
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.
Publisher: Springer Science & Business Media
ISBN: 3642298079
Category : Computers
Languages : en
Pages : 187
Book Description
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.
Constrained Clustering
Author: Sugato Basu
Publisher: CRC Press
ISBN: 9781584889977
Category : Computers
Languages : en
Pages : 472
Book Description
Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.
Publisher: CRC Press
ISBN: 9781584889977
Category : Computers
Languages : en
Pages : 472
Book Description
Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.
Knowledge and Systems Engineering
Author: Viet-Ha Nguyen
Publisher: Springer
ISBN: 3319116800
Category : Technology & Engineering
Languages : en
Pages : 673
Book Description
This volume contains papers presented at the Sixth International Conference on Knowledge and Systems Engineering (KSE 2014), which was held in Hanoi, Vietnam, during 9–11 October, 2014. The conference was organized by the University of Engineering and Technology, Vietnam National University, Hanoi. Besides the main track of contributed papers, this proceedings feature the results of four special sessions focusing on specific topics of interest and three invited keynote speeches. The book gathers a total of 51 carefully reviewed papers describing recent advances and development on various topics including knowledge discovery and data mining, natural language processing, expert systems, intelligent decision making, computational biology, computational modeling, optimization algorithms, and industrial applications.
Publisher: Springer
ISBN: 3319116800
Category : Technology & Engineering
Languages : en
Pages : 673
Book Description
This volume contains papers presented at the Sixth International Conference on Knowledge and Systems Engineering (KSE 2014), which was held in Hanoi, Vietnam, during 9–11 October, 2014. The conference was organized by the University of Engineering and Technology, Vietnam National University, Hanoi. Besides the main track of contributed papers, this proceedings feature the results of four special sessions focusing on specific topics of interest and three invited keynote speeches. The book gathers a total of 51 carefully reviewed papers describing recent advances and development on various topics including knowledge discovery and data mining, natural language processing, expert systems, intelligent decision making, computational biology, computational modeling, optimization algorithms, and industrial applications.
Recent Advances in Hybrid Metaheuristics for Data Clustering
Author: Sourav De
Publisher: John Wiley & Sons
ISBN: 1119551609
Category : Computers
Languages : en
Pages : 196
Book Description
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Publisher: John Wiley & Sons
ISBN: 1119551609
Category : Computers
Languages : en
Pages : 196
Book Description
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Advances in Artificial Intelligence - IBERAMIA 2008
Author: Hector Geffner
Publisher: Springer Science & Business Media
ISBN: 3540883088
Category : Computers
Languages : en
Pages : 476
Book Description
IBERAMIA is the international conference series of the Ibero-American Art- cialIntelligencecommunitythathasbeenmeetingeverytwoyearssincethe1988 meeting in Barcelona. The conference is supported by the main Ibero-American societies of AI and provides researchers from Portugal, Spain, and Latin Am- ica the opportunity to meet with AI researchers from all over the world. Since 1998, IBERAMIA has been a widely recognized international conference, with its papers written and presented in English, and its proceedings published by Springer in the LNAI series. This volume contains the papers accepted for presentation at Iberamia 2008, held in Lisbon, Portugal in October 2008. For this conference, 147 papers were submitted for the main track, and 46 papers were accepted. Each submitted paper was reviewed by three members of the Program Committee (PC), coor- nated by an Area Chair. In certain cases, extra reviewerswererecruited to write additional reviews. The list of Area Chairs, PC members, and reviewers can be found on the pages that follow. The authors of the submitted papers represent 14 countries with topics c- ering the whole spectrum of themes in AI: robotics and multiagent systems, knowledge representation and constraints, machine learning and planning, n- ural language processing and AI applications. TheprogramforIberamia2008alsoincludedthreeinvitedspeakers:Christian Lemaitre (LANIA, M ́ exico), R. Michael Young (NCSU, USA) and Miguel Dias (Microsoft LDMC, Lisbon) as well as ?ve workshops.
Publisher: Springer Science & Business Media
ISBN: 3540883088
Category : Computers
Languages : en
Pages : 476
Book Description
IBERAMIA is the international conference series of the Ibero-American Art- cialIntelligencecommunitythathasbeenmeetingeverytwoyearssincethe1988 meeting in Barcelona. The conference is supported by the main Ibero-American societies of AI and provides researchers from Portugal, Spain, and Latin Am- ica the opportunity to meet with AI researchers from all over the world. Since 1998, IBERAMIA has been a widely recognized international conference, with its papers written and presented in English, and its proceedings published by Springer in the LNAI series. This volume contains the papers accepted for presentation at Iberamia 2008, held in Lisbon, Portugal in October 2008. For this conference, 147 papers were submitted for the main track, and 46 papers were accepted. Each submitted paper was reviewed by three members of the Program Committee (PC), coor- nated by an Area Chair. In certain cases, extra reviewerswererecruited to write additional reviews. The list of Area Chairs, PC members, and reviewers can be found on the pages that follow. The authors of the submitted papers represent 14 countries with topics c- ering the whole spectrum of themes in AI: robotics and multiagent systems, knowledge representation and constraints, machine learning and planning, n- ural language processing and AI applications. TheprogramforIberamia2008alsoincludedthreeinvitedspeakers:Christian Lemaitre (LANIA, M ́ exico), R. Michael Young (NCSU, USA) and Miguel Dias (Microsoft LDMC, Lisbon) as well as ?ve workshops.
Computational Intelligence and Information Technology
Author: Vinu V Das
Publisher: Springer
ISBN: 3642257348
Category : Computers
Languages : en
Pages : 900
Book Description
This book constitutes the proceedings of the First International Conference on Computational Intelligence and Information Technology, CIIT 2011, held in Pune, India, in November 2011. The 58 revised full papers, 67 revised short papers, and 32 poster papers presented were carefully reviewed and selected from 483 initial submissions. The papers are contributed by innovative academics and industrial experts in the field of computer science, information technology, computational engineering, mobile communication and security and offer a stage to a common forum, where a constructive dialog on theoretical concepts, practical ideas and results of the state of the art can be developed.
Publisher: Springer
ISBN: 3642257348
Category : Computers
Languages : en
Pages : 900
Book Description
This book constitutes the proceedings of the First International Conference on Computational Intelligence and Information Technology, CIIT 2011, held in Pune, India, in November 2011. The 58 revised full papers, 67 revised short papers, and 32 poster papers presented were carefully reviewed and selected from 483 initial submissions. The papers are contributed by innovative academics and industrial experts in the field of computer science, information technology, computational engineering, mobile communication and security and offer a stage to a common forum, where a constructive dialog on theoretical concepts, practical ideas and results of the state of the art can be developed.
Proceedings of the 19th International Conference on World Wide Web
Author: Paul Jones
Publisher:
ISBN: 9781605587998
Category : Internet
Languages : en
Pages : 1365
Book Description
WWW '10: The 19th International World Wide Web Conference Apr 26, 2010-Apr 30, 2010 Raleigh, USA. You can view more information about this proceeding and all of ACMs other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
Publisher:
ISBN: 9781605587998
Category : Internet
Languages : en
Pages : 1365
Book Description
WWW '10: The 19th International World Wide Web Conference Apr 26, 2010-Apr 30, 2010 Raleigh, USA. You can view more information about this proceeding and all of ACMs other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
Advances in Neural Networks – ISNN 2020
Author: Min Han
Publisher: Springer Nature
ISBN: 3030642216
Category : Computers
Languages : en
Pages : 289
Book Description
This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.
Publisher: Springer Nature
ISBN: 3030642216
Category : Computers
Languages : en
Pages : 289
Book Description
This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.
Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011
Author: Kusum Deep
Publisher: Springer Science & Business Media
ISBN: 8132204913
Category : Technology & Engineering
Languages : en
Pages : 1034
Book Description
The objective is to provide the latest developments in the area of soft computing. These are the cutting edge technologies that have immense application in various fields. All the papers will undergo the peer review process to maintain the quality of work.
Publisher: Springer Science & Business Media
ISBN: 8132204913
Category : Technology & Engineering
Languages : en
Pages : 1034
Book Description
The objective is to provide the latest developments in the area of soft computing. These are the cutting edge technologies that have immense application in various fields. All the papers will undergo the peer review process to maintain the quality of work.
Practical Guide to Cluster Analysis in R
Author: Alboukadel Kassambara
Publisher: STHDA
ISBN: 1542462703
Category : Education
Languages : en
Pages : 168
Book Description
Although there are several good books on unsupervised machine learning, we felt that many of them are too theoretical. This book provides practical guide to cluster analysis, elegant visualization and interpretation. It contains 5 parts. Part I provides a quick introduction to R and presents required R packages, as well as, data formats and dissimilarity measures for cluster analysis and visualization. Part II covers partitioning clustering methods, which subdivide the data sets into a set of k groups, where k is the number of groups pre-specified by the analyst. Partitioning clustering approaches include: K-means, K-Medoids (PAM) and CLARA algorithms. In Part III, we consider hierarchical clustering method, which is an alternative approach to partitioning clustering. The result of hierarchical clustering is a tree-based representation of the objects called dendrogram. In this part, we describe how to compute, visualize, interpret and compare dendrograms. Part IV describes clustering validation and evaluation strategies, which consists of measuring the goodness of clustering results. Among the chapters covered here, there are: Assessing clustering tendency, Determining the optimal number of clusters, Cluster validation statistics, Choosing the best clustering algorithms and Computing p-value for hierarchical clustering. Part V presents advanced clustering methods, including: Hierarchical k-means clustering, Fuzzy clustering, Model-based clustering and Density-based clustering.
Publisher: STHDA
ISBN: 1542462703
Category : Education
Languages : en
Pages : 168
Book Description
Although there are several good books on unsupervised machine learning, we felt that many of them are too theoretical. This book provides practical guide to cluster analysis, elegant visualization and interpretation. It contains 5 parts. Part I provides a quick introduction to R and presents required R packages, as well as, data formats and dissimilarity measures for cluster analysis and visualization. Part II covers partitioning clustering methods, which subdivide the data sets into a set of k groups, where k is the number of groups pre-specified by the analyst. Partitioning clustering approaches include: K-means, K-Medoids (PAM) and CLARA algorithms. In Part III, we consider hierarchical clustering method, which is an alternative approach to partitioning clustering. The result of hierarchical clustering is a tree-based representation of the objects called dendrogram. In this part, we describe how to compute, visualize, interpret and compare dendrograms. Part IV describes clustering validation and evaluation strategies, which consists of measuring the goodness of clustering results. Among the chapters covered here, there are: Assessing clustering tendency, Determining the optimal number of clusters, Cluster validation statistics, Choosing the best clustering algorithms and Computing p-value for hierarchical clustering. Part V presents advanced clustering methods, including: Hierarchical k-means clustering, Fuzzy clustering, Model-based clustering and Density-based clustering.