Advances in Gabor Analysis

Advances in Gabor Analysis PDF Author: Hans G. Feichtinger
Publisher: Springer Science & Business Media
ISBN: 1461201330
Category : Mathematics
Languages : en
Pages : 356

Get Book

Book Description
The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract har monic analysis to basic applications. The title of the series reflects the im portance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbi otic evolution is axiomatic. Harmonic analysis is a wellspring of ideas and applicability that has flour ished, developed, and deepened over time within many disciplines and by means of creative cross-fertilization with diverse areas. The intricate and fundamental relationship between harmonic analysis and fields such as sig nal processing, partial differential equations (PDEs), and image processing is reflected in our state of the art ANHA series. Our vision of modern harmonic analysis includes mathematical areas such as wavelet theory, Banach algebras, classical Fourier analysis, time frequency analysis, and fractal geometry, as well as the diverse topics that impinge on them.

Advances in Gabor Analysis

Advances in Gabor Analysis PDF Author: Hans G. Feichtinger
Publisher: Springer Science & Business Media
ISBN: 1461201330
Category : Mathematics
Languages : en
Pages : 356

Get Book

Book Description
The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract har monic analysis to basic applications. The title of the series reflects the im portance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbi otic evolution is axiomatic. Harmonic analysis is a wellspring of ideas and applicability that has flour ished, developed, and deepened over time within many disciplines and by means of creative cross-fertilization with diverse areas. The intricate and fundamental relationship between harmonic analysis and fields such as sig nal processing, partial differential equations (PDEs), and image processing is reflected in our state of the art ANHA series. Our vision of modern harmonic analysis includes mathematical areas such as wavelet theory, Banach algebras, classical Fourier analysis, time frequency analysis, and fractal geometry, as well as the diverse topics that impinge on them.

Advances in Gabor Analysis

Advances in Gabor Analysis PDF Author: Hans G. Feichtinger
Publisher: Birkhauser
ISBN: 9783764342395
Category : Gabor transforms
Languages : en
Pages : 356

Get Book

Book Description
Unified, self-contained volume providing insight into the richness of Gabor analysis and its potential for development in applied mathematics and engineering. Mathematicians and engineers treat a range of topics, and cover theory and applications to areas such as digital and wireless communications. The work demonstrates interactions and connections among areas in which Gabor analysis plays a role: harmonic analysis, operator theory, quantum physics, numerical analysis, signal/image processing. For graduate students, professionals, and researchers in pure and applied mathematics, math physics, and engineering.

Gabor Analysis and Algorithms

Gabor Analysis and Algorithms PDF Author: Hans G. Feichtinger
Publisher: Springer Science & Business Media
ISBN: 1461220165
Category : Mathematics
Languages : en
Pages : 507

Get Book

Book Description
In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density.

Foundations of Time-Frequency Analysis

Foundations of Time-Frequency Analysis PDF Author: Karlheinz Gröchenig
Publisher: Springer Science & Business Media
ISBN: 1461200032
Category : Technology & Engineering
Languages : en
Pages : 367

Get Book

Book Description
Time-frequency analysis is a modern branch of harmonic analysis. It com prises all those parts of mathematics and its applications that use the struc ture of translations and modulations (or time-frequency shifts) for the anal ysis of functions and operators. Time-frequency analysis is a form of local Fourier analysis that treats time and frequency simultaneously and sym metrically. My goal is a systematic exposition of the foundations of time-frequency analysis, whence the title of the book. The topics range from the elemen tary theory of the short-time Fourier transform and classical results about the Wigner distribution via the recent theory of Gabor frames to quantita tive methods in time-frequency analysis and the theory of pseudodifferential operators. This book is motivated by applications in signal analysis and quantum mechanics, but it is not about these applications. The main ori entation is toward the detailed mathematical investigation of the rich and elegant structures underlying time-frequency analysis. Time-frequency analysis originates in the early development of quantum mechanics by H. Weyl, E. Wigner, and J. von Neumann around 1930, and in the theoretical foundation of information theory and signal analysis by D.

Excursions in Harmonic Analysis, Volume 2

Excursions in Harmonic Analysis, Volume 2 PDF Author: Travis D Andrews
Publisher: Springer Science & Business Media
ISBN: 0817683798
Category : Mathematics
Languages : en
Pages : 461

Get Book

Book Description
The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

Time‒Frequency and Time‒Scale Methods

Time‒Frequency and Time‒Scale Methods PDF Author: Jeffrey A. Hogan
Publisher: Springer Science & Business Media
ISBN: 0817644318
Category : Mathematics
Languages : en
Pages : 403

Get Book

Book Description
Developed in this book are several deep connections between time-frequency (Fourier/Gabor) analysis and time-scale (wavelet) analysis, emphasizing the powerful adaptive methods that emerge when separate techniques from each area are properly assembled in a larger context. While researchers at the forefront of these areas are well aware of the benefits of such a unified approach, there remains a knowledge gap in the larger community of practitioners about the precise strengths and limitations of Fourier/Gabor analysis versus wavelets. This book fills that gap by presenting the interface of time-frequency and time-scale methods as a rich area of work. "Foundations of Time-Frequency and Time-Scale Methods" will be suitable for applied mathematicians and engineers in signal/image processing and communication theory, as well as researchers and students in mathematical analysis, signal analysis, and mathematical physics.

Frames and Operator Theory in Analysis and Signal Processing

Frames and Operator Theory in Analysis and Signal Processing PDF Author: David R. Larson
Publisher: American Mathematical Soc.
ISBN: 0821841440
Category : Operator theory
Languages : en
Pages : 306

Get Book

Book Description
This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006.

Finite Frames

Finite Frames PDF Author: Peter G. Casazza
Publisher: Springer Science & Business Media
ISBN: 0817683720
Category : Mathematics
Languages : en
Pages : 492

Get Book

Book Description
Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.

Realtime Data Mining

Realtime Data Mining PDF Author: Alexander Paprotny
Publisher: Springer Science & Business Media
ISBN: 3319013211
Category : Computers
Languages : en
Pages : 333

Get Book

Book Description
​​​​Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data.​ The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Sampling Theory, a Renaissance

Sampling Theory, a Renaissance PDF Author: Götz E. Pfander
Publisher: Birkhäuser
ISBN: 3319197495
Category : Mathematics
Languages : en
Pages : 532

Get Book

Book Description
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.