Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics PDF Author: Joel H Ferziger
Publisher:
ISBN: 9783642976520
Category :
Languages : en
Pages : 380

Get Book Here

Book Description

Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics PDF Author: Joel H Ferziger
Publisher:
ISBN: 9783642976520
Category :
Languages : en
Pages : 380

Get Book Here

Book Description


Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics PDF Author: Joel H. Ferziger
Publisher: Springer
ISBN: 3319996932
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
This book is a guide to numerical methods for solving fluid dynamics problems. The most widely used discretization and solution methods, which are also found in most commercial CFD-programs, are described in detail. Some advanced topics, like moving grids, simulation of turbulence, computation of free-surface flows, multigrid methods and parallel computing, are also covered. Since CFD is a very broad field, we provide fundamental methods and ideas, with some illustrative examples, upon which more advanced techniques are built. Numerical accuracy and estimation of errors are important aspects and are discussed in many examples. Computer codes that include many of the methods described in the book can be obtained online. This 4th edition includes major revision of all chapters; some new methods are described and references to more recent publications with new approaches are included. Former Chapter 7 on solution of the Navier-Stokes equations has been split into two Chapters to allow for a more detailed description of several variants of the Fractional Step Method and a comparison with SIMPLE-like approaches. In Chapters 7 to 13, most examples have been replaced or recomputed, and hints regarding practical applications are made. Several new sections have been added, to cover, e.g., immersed-boundary methods, overset grids methods, fluid-structure interaction and conjugate heat transfer.

Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer PDF Author: Ryoichi Amano
Publisher: WIT Press
ISBN: 1845641442
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book Here

Book Description
Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.

Incompressible Computational Fluid Dynamics

Incompressible Computational Fluid Dynamics PDF Author: Max D. Gunzburger
Publisher: Cambridge University Press
ISBN: 9780521096225
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Incompressible computational fluid dynamics is an emerging and important discipline, with numerous applications in industry and science. Its methods employ rigourous mathematical analysis far beyond what is presently possible for compressible flows. Vortex methods, finite elements, and spectral methods are emphasised. Contributions from leading experts in the various sub-fields portray the wide-ranging nature of the subject. The book provides an entrée into the current research in the field. It can also serve as a source book for researchers and others who require information on methods and techniques.

Computational Methods for Astrophysical Fluid Flow

Computational Methods for Astrophysical Fluid Flow PDF Author: Randall J. LeVeque
Publisher: Springer Science & Business Media
ISBN: 3540316329
Category : Science
Languages : en
Pages : 523

Get Book Here

Book Description
This book leads directly to the most modern numerical techniques for compressible fluid flow, with special consideration given to astrophysical applications. Emphasis is put on high-resolution shock-capturing finite-volume schemes based on Riemann solvers. The applications of such schemes, in particular the PPM method, are given and include large-scale simulations of supernova explosions by core collapse and thermonuclear burning and astrophysical jets. Parts two and three treat radiation hydrodynamics. The power of adaptive (moving) grids is demonstrated with a number of stellar-physical simulations showing very crispy shock-front structures.

Advanced Computational Fluid and Aerodynamics

Advanced Computational Fluid and Aerodynamics PDF Author: Paul G. Tucker
Publisher: Cambridge University Press
ISBN: 1107075904
Category : Science
Languages : en
Pages : 589

Get Book Here

Book Description
This book outlines the computational fluid dynamics evolution and gives an overview of the methods available to the engineer.

Computational Methods for Two-Phase Flows

Computational Methods for Two-Phase Flows PDF Author: Peter D. M. Spelt
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814280976
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
This book uniquely presents an overview of methods for the numerical simulation of a wide range of two-phase flows, aimed at a broad readership of engineers and scientists at graduate level. Given that numerous methods have been proposed recently in this field, the new book series could not have been more timely and much needed for an up-to-date overview of the advances, whilst not restricting the focus on two-phase flows or any particular method. The book is written by a team of leading experts who have contributed substantially to the development of the methods and who have also applied the concepts and theories to a diverse range of applications. Computational Methods for Two-Phase Flows is self-contained, and aims to elucidate and analyze the strong relations between the various numerical methods, beyond merely giving detailed summary of the various methods. A unique enhanced feature of the book is that the sample codes that come with the book provide further benefits and ease of use to readers to implement the various numerical methods. The book is the first volume of a new book series entitled Advances in Computational Fluid Dynamics, published by World Scientific.

Advances in Computational Dynamics of Particles, Materials and Structures

Advances in Computational Dynamics of Particles, Materials and Structures PDF Author: Jason Har
Publisher: John Wiley & Sons
ISBN: 1119966922
Category : Technology & Engineering
Languages : en
Pages : 806

Get Book Here

Book Description
Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Advances in Computational Dynamics of Particles, Materials and Structures not only presents emerging trends and cutting edge state-of-the-art tools in a contemporary setting, but also provides a unique blend of classical and new and innovative theoretical and computational aspects covering both particle dynamics, and flexible continuum structural dynamics applications. It provides a unified viewpoint and encompasses the classical Newtonian, Lagrangian, and Hamiltonian mechanics frameworks as well as new and alternative contemporary approaches and their equivalences in [start italics]vector and scalar formalisms[end italics] to address the various problems in engineering sciences and physics. Highlights and key features Provides practical applications, from a unified perspective, to both particle and continuum mechanics of flexible structures and materials Presents new and traditional developments, as well as alternate perspectives, for space and time discretization Describes a unified viewpoint under the umbrella of Algorithms by Design for the class of linear multi-step methods Includes fundamentals underlying the theoretical aspects and numerical developments, illustrative applications and practice exercises The completeness and breadth and depth of coverage makes Advances in Computational Dynamics of Particles, Materials and Structures a valuable textbook and reference for graduate students, researchers and engineers/scientists working in the field of computational mechanics; and in the general areas of computational sciences and engineering.

Advancement of Shock Capturing Computational Fluid Dynamics Methods

Advancement of Shock Capturing Computational Fluid Dynamics Methods PDF Author: Keiichi Kitamura
Publisher: Springer Nature
ISBN: 9811590117
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description
This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.

Advanced Computational Methods in Science and Engineering

Advanced Computational Methods in Science and Engineering PDF Author: Barry Koren
Publisher: Springer Science & Business Media
ISBN: 364203344X
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.