Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Complex Geometry
Author: Daniel Huybrechts
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Publisher: Springer Science & Business Media
ISBN: 9783540212904
Category : Computers
Languages : en
Pages : 336
Book Description
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Complex Differential Geometry
Author: Fangyang Zheng
Publisher: American Mathematical Soc.
ISBN: 9780821888223
Category : Mathematics
Languages : en
Pages : 284
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821888223
Category : Mathematics
Languages : en
Pages : 284
Book Description
The Geometry of Complex Domains
Author: Robert E. Greene
Publisher: Springer Science & Business Media
ISBN: 0817646221
Category : Mathematics
Languages : en
Pages : 310
Book Description
This work examines a rich tapestry of themes and concepts and provides a comprehensive treatment of an important area of mathematics, while simultaneously covering a broader area of the geometry of domains in complex space. At once authoritative and accessible, this text touches upon many important parts of modern mathematics: complex geometry, equivalent embeddings, Bergman and Kahler geometry, curvatures, differential invariants, boundary asymptotics of geometries, group actions, and moduli spaces. The Geometry of Complex Domains can serve as a “coming of age” book for a graduate student who has completed at least one semester or more of complex analysis, and will be most welcomed by analysts and geometers engaged in current research.
Publisher: Springer Science & Business Media
ISBN: 0817646221
Category : Mathematics
Languages : en
Pages : 310
Book Description
This work examines a rich tapestry of themes and concepts and provides a comprehensive treatment of an important area of mathematics, while simultaneously covering a broader area of the geometry of domains in complex space. At once authoritative and accessible, this text touches upon many important parts of modern mathematics: complex geometry, equivalent embeddings, Bergman and Kahler geometry, curvatures, differential invariants, boundary asymptotics of geometries, group actions, and moduli spaces. The Geometry of Complex Domains can serve as a “coming of age” book for a graduate student who has completed at least one semester or more of complex analysis, and will be most welcomed by analysts and geometers engaged in current research.
An Introduction to Complex Analysis and Geometry
Author: John P. D'Angelo
Publisher: American Mathematical Soc.
ISBN: 0821852744
Category : Functions of complex variables
Languages : en
Pages : 177
Book Description
Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.
Publisher: American Mathematical Soc.
ISBN: 0821852744
Category : Functions of complex variables
Languages : en
Pages : 177
Book Description
Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.
Complex Analysis and CR Geometry
Author: Giuseppe Zampieri
Publisher: American Mathematical Soc.
ISBN: 0821844423
Category : Mathematics
Languages : en
Pages : 210
Book Description
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the $\bar\partial$-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometryrequires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting tograduate students who wish to learn it.
Publisher: American Mathematical Soc.
ISBN: 0821844423
Category : Mathematics
Languages : en
Pages : 210
Book Description
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the $\bar\partial$-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometryrequires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting tograduate students who wish to learn it.
Hodge Theory, Complex Geometry, and Representation Theory
Author: Mark Green
Publisher: American Mathematical Soc.
ISBN: 1470410125
Category : Mathematics
Languages : en
Pages : 314
Book Description
This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.
Publisher: American Mathematical Soc.
ISBN: 1470410125
Category : Mathematics
Languages : en
Pages : 314
Book Description
This monograph presents topics in Hodge theory and representation theory, two of the most active and important areas in contemporary mathematics. The underlying theme is the use of complex geometry to understand the two subjects and their relationships to one another--an approach that is complementary to what is in the literature. Finite-dimensional representation theory and complex geometry enter via the concept of Hodge representations and Hodge domains. Infinite-dimensional representation theory, specifically the discrete series and their limits, enters through the realization of these representations through complex geometry as pioneered by Schmid, and in the subsequent description of automorphic cohomology. For the latter topic, of particular importance is the recent work of Carayol that potentially introduces a new perspective in arithmetic automorphic representation theory. The present work gives a treatment of Carayol's work, and some extensions of it, set in a general complex geometric framework. Additional subjects include a description of the relationship between limiting mixed Hodge structures and the boundary orbit structure of Hodge domains, a general treatment of the correspondence spaces that are used to construct Penrose transforms and selected other topics from the recent literature. A co-publication of the AMS and CBMS.
Hodge Theory and Complex Algebraic Geometry I:
Author: Claire Voisin
Publisher: Cambridge University Press
ISBN: 9780521718011
Category : Mathematics
Languages : en
Pages : 334
Book Description
This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
Publisher: Cambridge University Press
ISBN: 9780521718011
Category : Mathematics
Languages : en
Pages : 334
Book Description
This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.
From Holomorphic Functions to Complex Manifolds
Author: Klaus Fritzsche
Publisher: Springer Science & Business Media
ISBN: 146849273X
Category : Mathematics
Languages : en
Pages : 406
Book Description
This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
Publisher: Springer Science & Business Media
ISBN: 146849273X
Category : Mathematics
Languages : en
Pages : 406
Book Description
This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
Recent Advances in Algebraic Geometry
Author: Christopher D. Hacon
Publisher: Cambridge University Press
ISBN: 110764755X
Category : Mathematics
Languages : en
Pages : 451
Book Description
A comprehensive collection of expository articles on cutting-edge topics at the forefront of research in algebraic geometry.
Publisher: Cambridge University Press
ISBN: 110764755X
Category : Mathematics
Languages : en
Pages : 451
Book Description
A comprehensive collection of expository articles on cutting-edge topics at the forefront of research in algebraic geometry.
Several Complex Variables with Connections to Algebraic Geometry and Lie Groups
Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 082183178X
Category : Mathematics
Languages : en
Pages : 530
Book Description
This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.
Publisher: American Mathematical Soc.
ISBN: 082183178X
Category : Mathematics
Languages : en
Pages : 530
Book Description
This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.