Author: Achim Wagner
Publisher: Springer Nature
ISBN: 3031574966
Category :
Languages : en
Pages : 207
Book Description
Advances in Artificial Intelligence in Manufacturing
Author: Achim Wagner
Publisher: Springer Nature
ISBN: 3031574966
Category :
Languages : en
Pages : 207
Book Description
Publisher: Springer Nature
ISBN: 3031574966
Category :
Languages : en
Pages : 207
Book Description
Artificial Intelligence Applications in Manufacturing
Author: A. Fazel Famili
Publisher: Menlo Press, Calif. : AAAI Press/MIT Press
ISBN:
Category : Computers
Languages : en
Pages : 486
Book Description
The past decade has seen considerable advances in CAE tools that employ leading-edge artificial intelligence techniques and that can be used with CAD/CAM tools to reduce design costs. In three parts, this book covers current Al applications that can prove beneficial in the design and planning stages of manufacturing, that can assist in solving scheduling and control problems, and that can be used in manufacturing integration.A. F. Famili is Research Scientist at the Knowledge Systems Laboratory of the National Research Council of Canada. Steven H. Kim is Visiting Fellow at the Design Research Institute, Cornell University. Dana S. Nau an Associate Professor in the Computer Science Department at the University of Maryland.Contents: Application of Machine Learning to Industrial Planning and Decision Making. Incorporating Special Purpose Resource Design in Planning to Make More Efficient Plans. Geometric Reasoning Using a Feature Algebra. Backward Assembly Planning Symmetry Groups in Solid Model-Based Assembly Planning. An Expert System Approach for Economic Evaluation of Machining Operation Planning. Interactive Problem Solving for Production Planning. An Abstraction-Based Search and Learning Approach for Effective Scheduling. ADDYMS: Architecture for Distributed Dynamic Manufacturing Scheduling. An Architecture for Real Time Distributed Scheduling. Teamwork Among Intelligent Agents: Framework and Case Study in Robotic Service. Exploiting Local Flexibility During Execution of Precomputed Schedules. Symbolic Representation and Planning for Robot Control Systems in Manufacturing. An Architecture for Integrating Enterprise Automation. An Intelligent Agent Framework for Enterprise Integration. Integrated Software System for Intelligent Manufacturing. Enterprise Management Network Architecture: A Tool for Manufacturing Enterprise Integration. Design and Manufacturing: Integration through Quality.
Publisher: Menlo Press, Calif. : AAAI Press/MIT Press
ISBN:
Category : Computers
Languages : en
Pages : 486
Book Description
The past decade has seen considerable advances in CAE tools that employ leading-edge artificial intelligence techniques and that can be used with CAD/CAM tools to reduce design costs. In three parts, this book covers current Al applications that can prove beneficial in the design and planning stages of manufacturing, that can assist in solving scheduling and control problems, and that can be used in manufacturing integration.A. F. Famili is Research Scientist at the Knowledge Systems Laboratory of the National Research Council of Canada. Steven H. Kim is Visiting Fellow at the Design Research Institute, Cornell University. Dana S. Nau an Associate Professor in the Computer Science Department at the University of Maryland.Contents: Application of Machine Learning to Industrial Planning and Decision Making. Incorporating Special Purpose Resource Design in Planning to Make More Efficient Plans. Geometric Reasoning Using a Feature Algebra. Backward Assembly Planning Symmetry Groups in Solid Model-Based Assembly Planning. An Expert System Approach for Economic Evaluation of Machining Operation Planning. Interactive Problem Solving for Production Planning. An Abstraction-Based Search and Learning Approach for Effective Scheduling. ADDYMS: Architecture for Distributed Dynamic Manufacturing Scheduling. An Architecture for Real Time Distributed Scheduling. Teamwork Among Intelligent Agents: Framework and Case Study in Robotic Service. Exploiting Local Flexibility During Execution of Precomputed Schedules. Symbolic Representation and Planning for Robot Control Systems in Manufacturing. An Architecture for Integrating Enterprise Automation. An Intelligent Agent Framework for Enterprise Integration. Integrated Software System for Intelligent Manufacturing. Enterprise Management Network Architecture: A Tool for Manufacturing Enterprise Integration. Design and Manufacturing: Integration through Quality.
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems
Author: Alexandre Dolgui
Publisher: Springer Nature
ISBN: 303085874X
Category : Computers
Languages : en
Pages : 779
Book Description
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
Publisher: Springer Nature
ISBN: 303085874X
Category : Computers
Languages : en
Pages : 779
Book Description
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Artificial Intelligence
Author: Luis Carlos Rabelo Mendizabal
Publisher:
ISBN: 9781536126778
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
After decades of basic research and more promises than impressive applications, artificial intelligence (AI) is starting to deliver benefits. A convergence of advances is motivating this new surge of AI development and applications. Computer capability as it has evolved from high throughput and high performance computing systems is increasing. AI models and operations research adaptations are becoming more mature, and the world is breeding big data not only from the web and social media but also from the Internet of Things. Organizations around the world have been realizing that there are substantial performance gains and increases in productivity for the use of AI and predictive analytics techniques. Their use is bringing a new era of breakthrough innovation and opportunities. This book, compiles research insights and applications in diverse areas such as manufacturing, supply chain management, pricing, autonomous vehicles, healthcare, ecommerce, and aeronautics. Using classical and advanced tools in AI such as deep learning, particle swarm optimization, support vector machines and genetic programming among others. This is a very distinctive book which discusses important applications using a variety of paradigms from AI and outlines some of the research to be performed. The work supersedes similar books that do not cover as diversified a set of sophisticated applications. The authors present a comprehensive and articulated view of recent developments, identifies the applications gap by quoting from the experience of experts, and details suggested research areas. Artificial Intelligence: Advances in Research and Applications guides the reader through an intuitive understanding of the methodologies and tools for building and modeling intelligent systems. The book's coverage is broad, starting with clustering techniques with unsupervised ensemble learning, where the optimal combination strategy of individual partitions is robust in comparison to the selection of an algorithmic clustering pool. This is followed by a case in a parallel-distributed simulator using deep learning for its configuration. Chapter Three presents a case for autonomous vehicles. Chapter Four discusses the novel use of genetic algorithms with support vector machines. Chapters Five through Thirteen focus on the applications. The book discusses how the use of AI can allow for productivity development and other benefits not just for businesses, but also for economies. Finally, you can find an interesting investigation of the transhuman dimension of AI.
Publisher:
ISBN: 9781536126778
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
After decades of basic research and more promises than impressive applications, artificial intelligence (AI) is starting to deliver benefits. A convergence of advances is motivating this new surge of AI development and applications. Computer capability as it has evolved from high throughput and high performance computing systems is increasing. AI models and operations research adaptations are becoming more mature, and the world is breeding big data not only from the web and social media but also from the Internet of Things. Organizations around the world have been realizing that there are substantial performance gains and increases in productivity for the use of AI and predictive analytics techniques. Their use is bringing a new era of breakthrough innovation and opportunities. This book, compiles research insights and applications in diverse areas such as manufacturing, supply chain management, pricing, autonomous vehicles, healthcare, ecommerce, and aeronautics. Using classical and advanced tools in AI such as deep learning, particle swarm optimization, support vector machines and genetic programming among others. This is a very distinctive book which discusses important applications using a variety of paradigms from AI and outlines some of the research to be performed. The work supersedes similar books that do not cover as diversified a set of sophisticated applications. The authors present a comprehensive and articulated view of recent developments, identifies the applications gap by quoting from the experience of experts, and details suggested research areas. Artificial Intelligence: Advances in Research and Applications guides the reader through an intuitive understanding of the methodologies and tools for building and modeling intelligent systems. The book's coverage is broad, starting with clustering techniques with unsupervised ensemble learning, where the optimal combination strategy of individual partitions is robust in comparison to the selection of an algorithmic clustering pool. This is followed by a case in a parallel-distributed simulator using deep learning for its configuration. Chapter Three presents a case for autonomous vehicles. Chapter Four discusses the novel use of genetic algorithms with support vector machines. Chapters Five through Thirteen focus on the applications. The book discusses how the use of AI can allow for productivity development and other benefits not just for businesses, but also for economies. Finally, you can find an interesting investigation of the transhuman dimension of AI.
The Economics of Artificial Intelligence
Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Applications of Artificial Intelligence in Additive Manufacturing
Author: Sachin Salunkhe
Publisher: Engineering Science Reference
ISBN: 9781799885160
Category : Additive manufacturing
Languages : en
Pages : 272
Book Description
"This book provides introductory instruction on how to learn how to use artificial intelligence to produce additively manufactured parts, including a description of the starting points, what you can know, how it blends and how artificial intelligence in additive manufacturing apply"--
Publisher: Engineering Science Reference
ISBN: 9781799885160
Category : Additive manufacturing
Languages : en
Pages : 272
Book Description
"This book provides introductory instruction on how to learn how to use artificial intelligence to produce additively manufactured parts, including a description of the starting points, what you can know, how it blends and how artificial intelligence in additive manufacturing apply"--
Artificial Intelligence
Author: Harvard Business Review
Publisher: HBR Insights
ISBN: 9781633697898
Category : Business & Economics
Languages : en
Pages : 160
Book Description
Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.
Publisher: HBR Insights
ISBN: 9781633697898
Category : Business & Economics
Languages : en
Pages : 160
Book Description
Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.
Production Systems Engineering
Author: Jingshan Li
Publisher: Springer Science & Business Media
ISBN: 0387755799
Category : Technology & Engineering
Languages : en
Pages : 674
Book Description
Production Systems Engineering (PSE) is an emerging branch of Engineering intended to uncover fundamental principles of production systems and utilize them for analysis, continuous improvement, and design. This volume is the first ever textbook devoted exclusively to PSE. It is intended for senior undergraduate and first year graduate students interested in manufacturing. The development is first principle-based rather than recipe-based. The only prerequisite is elementary Probability Theory; however, all necessary probability facts are reviewed in an introductory chapter. Using a system-theoretic approach, this textbook provides analytical solutions for the following problems: mathematical modeling of production systems, performance analysis, constrained improvability, bottleneck identification and elimination, lean buffer design, product quality, customer demand satisfaction, transient behavior, and system-theoretic properties. Numerous case studies are presented. In addition, the so-called PSE Toolbox, which implements the algorithms developed, is described. The volume includes numerous case studies and problems for homework assignment.
Publisher: Springer Science & Business Media
ISBN: 0387755799
Category : Technology & Engineering
Languages : en
Pages : 674
Book Description
Production Systems Engineering (PSE) is an emerging branch of Engineering intended to uncover fundamental principles of production systems and utilize them for analysis, continuous improvement, and design. This volume is the first ever textbook devoted exclusively to PSE. It is intended for senior undergraduate and first year graduate students interested in manufacturing. The development is first principle-based rather than recipe-based. The only prerequisite is elementary Probability Theory; however, all necessary probability facts are reviewed in an introductory chapter. Using a system-theoretic approach, this textbook provides analytical solutions for the following problems: mathematical modeling of production systems, performance analysis, constrained improvability, bottleneck identification and elimination, lean buffer design, product quality, customer demand satisfaction, transient behavior, and system-theoretic properties. Numerous case studies are presented. In addition, the so-called PSE Toolbox, which implements the algorithms developed, is described. The volume includes numerous case studies and problems for homework assignment.
Industrial Machine Learning
Author: Andreas François Vermeulen
Publisher: Apress
ISBN: 1484253167
Category : Computers
Languages : en
Pages : 652
Book Description
Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. What You Will Learn Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science Who This Book Is For Intermediate to expert level professionals in the fields of data science, data engineering, machine learning, and data management
Publisher: Apress
ISBN: 1484253167
Category : Computers
Languages : en
Pages : 652
Book Description
Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. What You Will Learn Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science Who This Book Is For Intermediate to expert level professionals in the fields of data science, data engineering, machine learning, and data management