Author: Brajendra C. Sutradhar
Publisher: Springer
ISBN: 331931260X
Category : Mathematics
Languages : en
Pages : 267
Book Description
This proceedings volume contains eight selected papers that were presented in the International Symposium in Statistics (ISS) 2015 On Advances in Parametric and Semi-parametric Analysis of Multivariate, Time Series, Spatial-temporal, and Familial-longitudinal Data, held in St. John’s, Canada from July 6 to 8, 2015. The main objective of the ISS-2015 was the discussion on advances and challenges in parametric and semi-parametric analysis for correlated data in both continuous and discrete setups. Thus, as a reflection of the theme of the symposium, the eight papers of this proceedings volume are presented in four parts. Part I is comprised of papers examining Elliptical t Distribution Theory. In Part II, the papers cover spatial and temporal data analysis. Part III is focused on longitudinal multinomial models in parametric and semi-parametric setups. Finally Part IV concludes with a paper on the inferences for longitudinal data subject to a challenge of important covariates selection from a set of large number of covariates available for the individuals in the study.
Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data
Dynamic Mixed Models for Familial Longitudinal Data
Author: Brajendra C. Sutradhar
Publisher: Springer Science & Business Media
ISBN: 1441983422
Category : Mathematics
Languages : en
Pages : 509
Book Description
This book provides a theoretical foundation for the analysis of discrete data such as count and binary data in the longitudinal setup. Unlike the existing books, this book uses a class of auto-correlation structures to model the longitudinal correlations for the repeated discrete data that accommodates all possible Gaussian type auto-correlation models as special cases including the equi-correlation models. This new dynamic modelling approach is utilized to develop theoretically sound inference techniques such as the generalized quasi-likelihood (GQL) technique for consistent and efficient estimation of the underlying regression effects involved in the model, whereas the existing ‘working’ correlations based GEE (generalized estimating equations) approach has serious theoretical limitations both for consistent and efficient estimation, and the existing random effects based correlations approach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of independent families by using the class of auto-correlation structures conditional on the random effects. The book also provides models and inferences for discrete longitudinal data in the adaptive clinical trial set up. The book is mathematically rigorous and provides details for the development of estimation approaches under selected familial and longitudinal models. Further, while the book provides special cares for mathematics behind the correlation models, it also presents the illustrations of the statistical analysis of various real life data. This book will be of interest to the researchers including graduate students in biostatistics and econometrics, among other applied statistics research areas. Brajendra Sutradhar is a University Research Professor at Memorial University in St. John’s, Canada. He is an elected member of the International Statistical Institute and a fellow of the American Statistical Association. He has published about 110 papers in statistics journals in the area of multivariate analysis, time series analysis including forecasting, sampling, survival analysis for correlated failure times, robust inferences in generalized linear mixed models with outliers, and generalized linear longitudinal mixed models with bio-statistical and econometric applications. He has served as an associate editor for six years for Canadian Journal of Statistics and for four years for the Journal of Environmental and Ecological Statistics. He has served for 3 years as a member of the advisory committee on statistical methods in Statistics Canada. Professor Sutradhar was awarded 2007 distinguished service award of Statistics Society of Canada for his many years of services to the society including his special services for society’s annual meetings.
Publisher: Springer Science & Business Media
ISBN: 1441983422
Category : Mathematics
Languages : en
Pages : 509
Book Description
This book provides a theoretical foundation for the analysis of discrete data such as count and binary data in the longitudinal setup. Unlike the existing books, this book uses a class of auto-correlation structures to model the longitudinal correlations for the repeated discrete data that accommodates all possible Gaussian type auto-correlation models as special cases including the equi-correlation models. This new dynamic modelling approach is utilized to develop theoretically sound inference techniques such as the generalized quasi-likelihood (GQL) technique for consistent and efficient estimation of the underlying regression effects involved in the model, whereas the existing ‘working’ correlations based GEE (generalized estimating equations) approach has serious theoretical limitations both for consistent and efficient estimation, and the existing random effects based correlations approach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of independent families by using the class of auto-correlation structures conditional on the random effects. The book also provides models and inferences for discrete longitudinal data in the adaptive clinical trial set up. The book is mathematically rigorous and provides details for the development of estimation approaches under selected familial and longitudinal models. Further, while the book provides special cares for mathematics behind the correlation models, it also presents the illustrations of the statistical analysis of various real life data. This book will be of interest to the researchers including graduate students in biostatistics and econometrics, among other applied statistics research areas. Brajendra Sutradhar is a University Research Professor at Memorial University in St. John’s, Canada. He is an elected member of the International Statistical Institute and a fellow of the American Statistical Association. He has published about 110 papers in statistics journals in the area of multivariate analysis, time series analysis including forecasting, sampling, survival analysis for correlated failure times, robust inferences in generalized linear mixed models with outliers, and generalized linear longitudinal mixed models with bio-statistical and econometric applications. He has served as an associate editor for six years for Canadian Journal of Statistics and for four years for the Journal of Environmental and Ecological Statistics. He has served for 3 years as a member of the advisory committee on statistical methods in Statistics Canada. Professor Sutradhar was awarded 2007 distinguished service award of Statistics Society of Canada for his many years of services to the society including his special services for society’s annual meetings.
Past, Present, and Future of Statistical Science
Author: Xihong Lin
Publisher: CRC Press
ISBN: 1482204983
Category : Mathematics
Languages : en
Pages : 648
Book Description
Past, Present, and Future of Statistical Science was commissioned in 2013 by the Committee of Presidents of Statistical Societies (COPSS) to celebrate its 50th anniversary and the International Year of Statistics. COPSS consists of five charter member statistical societies in North America and is best known for sponsoring prestigious awards in stat
Publisher: CRC Press
ISBN: 1482204983
Category : Mathematics
Languages : en
Pages : 648
Book Description
Past, Present, and Future of Statistical Science was commissioned in 2013 by the Committee of Presidents of Statistical Societies (COPSS) to celebrate its 50th anniversary and the International Year of Statistics. COPSS consists of five charter member statistical societies in North America and is best known for sponsoring prestigious awards in stat
New Developments for Embracing Genomic Selection in Breeding Applications
Author: Diego Jarquin
Publisher: Frontiers Media SA
ISBN: 2889744345
Category : Science
Languages : en
Pages : 197
Book Description
Publisher: Frontiers Media SA
ISBN: 2889744345
Category : Science
Languages : en
Pages : 197
Book Description
Longitudinal Data Analysis
Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633
Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633
Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Advanced Survival Models
Author: Catherine Legrand
Publisher: CRC Press
ISBN: 0429622554
Category : Mathematics
Languages : en
Pages : 361
Book Description
Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.
Publisher: CRC Press
ISBN: 0429622554
Category : Mathematics
Languages : en
Pages : 361
Book Description
Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.
Handbook of Silicon Semiconductor Metrology
Author: Alain C. Diebold
Publisher: CRC Press
ISBN: 0203904540
Category : Technology & Engineering
Languages : en
Pages : 703
Book Description
Containing more than 300 equations and nearly 500 drawings, photographs, and micrographs, this reference surveys key areas such as optical measurements and in-line calibration methods. It describes cleanroom-based measurement technology used during the manufacture of silicon integrated circuits and covers model-based, critical dimension, overlay
Publisher: CRC Press
ISBN: 0203904540
Category : Technology & Engineering
Languages : en
Pages : 703
Book Description
Containing more than 300 equations and nearly 500 drawings, photographs, and micrographs, this reference surveys key areas such as optical measurements and in-line calibration methods. It describes cleanroom-based measurement technology used during the manufacture of silicon integrated circuits and covers model-based, critical dimension, overlay
Modern Statistical Methods for Astronomy
Author: Eric D. Feigelson
Publisher: Cambridge University Press
ISBN: 1139536095
Category : Science
Languages : en
Pages : 490
Book Description
Modern astronomical research is beset with a vast range of statistical challenges, ranging from reducing data from megadatasets to characterizing an amazing variety of variable celestial objects or testing astrophysical theory. Linking astronomy to the world of modern statistics, this volume is a unique resource, introducing astronomers to advanced statistics through ready-to-use code in the public domain R statistical software environment. The book presents fundamental results of probability theory and statistical inference, before exploring several fields of applied statistics, such as data smoothing, regression, multivariate analysis and classification, treatment of nondetections, time series analysis, and spatial point processes. It applies the methods discussed to contemporary astronomical research datasets using the R statistical software, making it invaluable for graduate students and researchers facing complex data analysis tasks. A link to the author's website for this book can be found at www.cambridge.org/msma. Material available on their website includes datasets, R code and errata.
Publisher: Cambridge University Press
ISBN: 1139536095
Category : Science
Languages : en
Pages : 490
Book Description
Modern astronomical research is beset with a vast range of statistical challenges, ranging from reducing data from megadatasets to characterizing an amazing variety of variable celestial objects or testing astrophysical theory. Linking astronomy to the world of modern statistics, this volume is a unique resource, introducing astronomers to advanced statistics through ready-to-use code in the public domain R statistical software environment. The book presents fundamental results of probability theory and statistical inference, before exploring several fields of applied statistics, such as data smoothing, regression, multivariate analysis and classification, treatment of nondetections, time series analysis, and spatial point processes. It applies the methods discussed to contemporary astronomical research datasets using the R statistical software, making it invaluable for graduate students and researchers facing complex data analysis tasks. A link to the author's website for this book can be found at www.cambridge.org/msma. Material available on their website includes datasets, R code and errata.
The SAGE Handbook of Quantitative Methods in Psychology
Author: Roger E Millsap
Publisher: SAGE Publications
ISBN: 141293091X
Category : Psychology
Languages : en
Pages : 801
Book Description
`I often... wonder to myself whether the field needs another book, handbook, or encyclopedia on this topic. In this case I think that the answer is truly yes. The handbook is well focused on important issues in the field, and the chapters are written by recognized authorities in their fields. The book should appeal to anyone who wants an understanding of important topics that frequently go uncovered in graduate education in psychology' - David C Howell, Professor Emeritus, University of Vermont Quantitative psychology is arguably one of the oldest disciplines within the field of psychology and nearly all psychologists are exposed to quantitative psychology in some form. While textbooks in statistics, research methods and psychological measurement exist, none offer a unified treatment of quantitative psychology. The SAGE Handbook of Quantitative Methods in Psychology does just that. Each chapter covers a methodological topic with equal attention paid to established theory and the challenges facing methodologists as they address new research questions using that particular methodology. The reader will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area. Drawing on a global scholarship, the Handbook is divided into seven parts: Part One: Design and Inference: addresses issues in the inference of causal relations from experimental and non-experimental research, along with the design of true experiments and quasi-experiments, and the problem of missing data due to various influences such as attrition or non-compliance. Part Two: Measurement Theory: begins with a chapter on classical test theory, followed by the common factor analysis model as a model for psychological measurement. The models for continuous latent variables in item-response theory are covered next, followed by a chapter on discrete latent variable models as represented in latent class analysis. Part Three: Scaling Methods: covers metric and non-metric scaling methods as developed in multidimensional scaling, followed by consideration of the scaling of discrete measures as found in dual scaling and correspondence analysis. Models for preference data such as those found in random utility theory are covered next. Part Four: Data Analysis: includes chapters on regression models, categorical data analysis, multilevel or hierarchical models, resampling methods, robust data analysis, meta-analysis, Bayesian data analysis, and cluster analysis. Part Five: Structural Equation Models: addresses topics in general structural equation modeling, nonlinear structural equation models, mixture models, and multilevel structural equation models. Part Six: Longitudinal Models: covers the analysis of longitudinal data via mixed modeling, time series analysis and event history analysis. Part Seven: Specialized Models: covers specific topics including the analysis of neuro-imaging data and functional data-analysis.
Publisher: SAGE Publications
ISBN: 141293091X
Category : Psychology
Languages : en
Pages : 801
Book Description
`I often... wonder to myself whether the field needs another book, handbook, or encyclopedia on this topic. In this case I think that the answer is truly yes. The handbook is well focused on important issues in the field, and the chapters are written by recognized authorities in their fields. The book should appeal to anyone who wants an understanding of important topics that frequently go uncovered in graduate education in psychology' - David C Howell, Professor Emeritus, University of Vermont Quantitative psychology is arguably one of the oldest disciplines within the field of psychology and nearly all psychologists are exposed to quantitative psychology in some form. While textbooks in statistics, research methods and psychological measurement exist, none offer a unified treatment of quantitative psychology. The SAGE Handbook of Quantitative Methods in Psychology does just that. Each chapter covers a methodological topic with equal attention paid to established theory and the challenges facing methodologists as they address new research questions using that particular methodology. The reader will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area. Drawing on a global scholarship, the Handbook is divided into seven parts: Part One: Design and Inference: addresses issues in the inference of causal relations from experimental and non-experimental research, along with the design of true experiments and quasi-experiments, and the problem of missing data due to various influences such as attrition or non-compliance. Part Two: Measurement Theory: begins with a chapter on classical test theory, followed by the common factor analysis model as a model for psychological measurement. The models for continuous latent variables in item-response theory are covered next, followed by a chapter on discrete latent variable models as represented in latent class analysis. Part Three: Scaling Methods: covers metric and non-metric scaling methods as developed in multidimensional scaling, followed by consideration of the scaling of discrete measures as found in dual scaling and correspondence analysis. Models for preference data such as those found in random utility theory are covered next. Part Four: Data Analysis: includes chapters on regression models, categorical data analysis, multilevel or hierarchical models, resampling methods, robust data analysis, meta-analysis, Bayesian data analysis, and cluster analysis. Part Five: Structural Equation Models: addresses topics in general structural equation modeling, nonlinear structural equation models, mixture models, and multilevel structural equation models. Part Six: Longitudinal Models: covers the analysis of longitudinal data via mixed modeling, time series analysis and event history analysis. Part Seven: Specialized Models: covers specific topics including the analysis of neuro-imaging data and functional data-analysis.
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Author: Jacob Cohen
Publisher: Routledge
ISBN: 1134801017
Category : Psychology
Languages : en
Pages : 666
Book Description
This classic text on multiple regression is noted for its nonmathematical, applied, and data-analytic approach. Readers profit from its verbal-conceptual exposition and frequent use of examples. The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying website with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT, at www.psypress.com/9780805822236 . Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.
Publisher: Routledge
ISBN: 1134801017
Category : Psychology
Languages : en
Pages : 666
Book Description
This classic text on multiple regression is noted for its nonmathematical, applied, and data-analytic approach. Readers profit from its verbal-conceptual exposition and frequent use of examples. The applied emphasis provides clear illustrations of the principles and provides worked examples of the types of applications that are possible. Researchers learn how to specify regression models that directly address their research questions. An overview of the fundamental ideas of multiple regression and a review of bivariate correlation and regression and other elementary statistical concepts provide a strong foundation for understanding the rest of the text. The third edition features an increased emphasis on graphics and the use of confidence intervals and effect size measures, and an accompanying website with data for most of the numerical examples along with the computer code for SPSS, SAS, and SYSTAT, at www.psypress.com/9780805822236 . Applied Multiple Regression serves as both a textbook for graduate students and as a reference tool for researchers in psychology, education, health sciences, communications, business, sociology, political science, anthropology, and economics. An introductory knowledge of statistics is required. Self-standing chapters minimize the need for researchers to refer to previous chapters.