Author: Tadashi Imaizumi
Publisher: Springer Nature
ISBN: 9811533113
Category : Mathematics
Languages : en
Pages : 506
Book Description
This edited volume focuses on the latest developments in classification and data science and covers a wide range of topics in the context of data analysis and related areas, e.g. the analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, data visualization, multivariate statistical methods, and various applications to real data in the social sciences, medical sciences, and other disciplines. In addition to sharing theoretical and methodological findings, the book shows how to apply the proposed methods to a variety of problems — e.g. in consumer behavior, decision-making, marketing data and social network structures. Both methodological aspects and applications to a wide range of areas such as economics, behavioral science, marketing science, management science and the social sciences are covered. The book is chiefly intended for researchers and practitioners who are interested in the latest developments and practical applications in these fields, as well as applied statisticians and data analysts. Its combination of methodological advances with a wide range of real-world applications gathered from several fields makes it of unique value in helping readers solve their research problems.
Advanced Studies in Classification and Data Science
Author: Tadashi Imaizumi
Publisher: Springer Nature
ISBN: 9811533113
Category : Mathematics
Languages : en
Pages : 506
Book Description
This edited volume focuses on the latest developments in classification and data science and covers a wide range of topics in the context of data analysis and related areas, e.g. the analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, data visualization, multivariate statistical methods, and various applications to real data in the social sciences, medical sciences, and other disciplines. In addition to sharing theoretical and methodological findings, the book shows how to apply the proposed methods to a variety of problems — e.g. in consumer behavior, decision-making, marketing data and social network structures. Both methodological aspects and applications to a wide range of areas such as economics, behavioral science, marketing science, management science and the social sciences are covered. The book is chiefly intended for researchers and practitioners who are interested in the latest developments and practical applications in these fields, as well as applied statisticians and data analysts. Its combination of methodological advances with a wide range of real-world applications gathered from several fields makes it of unique value in helping readers solve their research problems.
Publisher: Springer Nature
ISBN: 9811533113
Category : Mathematics
Languages : en
Pages : 506
Book Description
This edited volume focuses on the latest developments in classification and data science and covers a wide range of topics in the context of data analysis and related areas, e.g. the analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, data visualization, multivariate statistical methods, and various applications to real data in the social sciences, medical sciences, and other disciplines. In addition to sharing theoretical and methodological findings, the book shows how to apply the proposed methods to a variety of problems — e.g. in consumer behavior, decision-making, marketing data and social network structures. Both methodological aspects and applications to a wide range of areas such as economics, behavioral science, marketing science, management science and the social sciences are covered. The book is chiefly intended for researchers and practitioners who are interested in the latest developments and practical applications in these fields, as well as applied statisticians and data analysts. Its combination of methodological advances with a wide range of real-world applications gathered from several fields makes it of unique value in helping readers solve their research problems.
Advances in Data Science and Classification
Author: Alfredo Rizzi
Publisher: Springer Science & Business Media
ISBN: 3642722539
Category : Mathematics
Languages : en
Pages : 678
Book Description
International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).
Publisher: Springer Science & Business Media
ISBN: 3642722539
Category : Mathematics
Languages : en
Pages : 678
Book Description
International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).
Advanced Studies in Behaviormetrics and Data Science
Author: Tadashi Imaizumi
Publisher: Springer Nature
ISBN: 9811527008
Category : Social Science
Languages : en
Pages : 472
Book Description
This book focuses on the latest developments in behaviormetrics and data science, covering a wide range of topics in data analysis and related areas of data science, including analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, visualization of such data, multivariate statistical methods, analysis of asymmetric relational data, and various applications to real data. In addition to theoretical and methodological results, it also shows how to apply the proposed methods to a variety of problems, for example in consumer behavior, decision making, marketing data, and social network structures. Moreover, it discuses methodological aspects and applications in a wide range of areas, such as behaviormetrics; behavioral science; psychology; and marketing, management and social sciences. Combining methodological advances with real-world applications collected from a variety of research fields, the book is a valuable resource for researchers and practitioners, as well as for applied statisticians and data analysts.
Publisher: Springer Nature
ISBN: 9811527008
Category : Social Science
Languages : en
Pages : 472
Book Description
This book focuses on the latest developments in behaviormetrics and data science, covering a wide range of topics in data analysis and related areas of data science, including analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, visualization of such data, multivariate statistical methods, analysis of asymmetric relational data, and various applications to real data. In addition to theoretical and methodological results, it also shows how to apply the proposed methods to a variety of problems, for example in consumer behavior, decision making, marketing data, and social network structures. Moreover, it discuses methodological aspects and applications in a wide range of areas, such as behaviormetrics; behavioral science; psychology; and marketing, management and social sciences. Combining methodological advances with real-world applications collected from a variety of research fields, the book is a valuable resource for researchers and practitioners, as well as for applied statisticians and data analysts.
Model-Based Clustering and Classification for Data Science
Author: Charles Bouveyron
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447
Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447
Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Classification, Clustering, and Data Analysis
Author: Krzystof Jajuga
Publisher: Springer Science & Business Media
ISBN: 3642561810
Category : Computers
Languages : en
Pages : 468
Book Description
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
Publisher: Springer Science & Business Media
ISBN: 3642561810
Category : Computers
Languages : en
Pages : 468
Book Description
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Advanced Classification Techniques for Healthcare Analysis
Author: Chakraborty, Chinmay
Publisher: IGI Global
ISBN: 1522577971
Category : Medical
Languages : en
Pages : 448
Book Description
Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.
Publisher: IGI Global
ISBN: 1522577971
Category : Medical
Languages : en
Pages : 448
Book Description
Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals’ success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.
Proceedings of International Joint Conference on Advances in Computational Intelligence
Author: Mohammad Shorif Uddin
Publisher: Springer Nature
ISBN: 9811903328
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
This book gathers outstanding research papers presented at the 5th International Joint Conference on Advances in Computational Intelligence (IJCACI 2021), held online during October 23–24, 2021. IJCACI 2021 is jointly organized by Jahangirnagar University (JU), Bangladesh, and South Asian University (SAU), India. The book presents the novel contributions in areas of computational intelligence and it serves as a reference material for advance research. The topics covered are collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
Publisher: Springer Nature
ISBN: 9811903328
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
This book gathers outstanding research papers presented at the 5th International Joint Conference on Advances in Computational Intelligence (IJCACI 2021), held online during October 23–24, 2021. IJCACI 2021 is jointly organized by Jahangirnagar University (JU), Bangladesh, and South Asian University (SAU), India. The book presents the novel contributions in areas of computational intelligence and it serves as a reference material for advance research. The topics covered are collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
Classification, Data Analysis, and Knowledge Organization
Author: Hans-Hermann Bock
Publisher: Springer Science & Business Media
ISBN: 3642763073
Category : Business & Economics
Languages : en
Pages : 404
Book Description
In science, industry, public administration and documentation centers large amounts of data and information are collected which must be analyzed, ordered, visualized, classified and stored efficiently in order to be useful for practical applications. This volume contains 50 selected theoretical and applied papers presenting a wealth of new and innovative ideas, methods, models and systems which can be used for this purpose. It combines papers and strategies from two main streams of research in an interdisciplinary, dynamic and exciting way: On the one hand, mathematical and statistical methods are described which allow a quantitative analysis of data, provide strategies for classifying objects or making exploratory searches for interesting structures, and give ways to make comprehensive graphical displays of large arrays of data. On the other hand, papers related to information sciences, informatics and data bank systems provide powerful tools for representing, modelling, storing and retrieving facts, data and knowledge characterized by qualitative descriptors, semantic relations, or linguistic concepts. The integration of both fields and a special part on applied problems from biology, medicine, archeology, industry and administration assure that this volume will be informative and useful for theory and practice.
Publisher: Springer Science & Business Media
ISBN: 3642763073
Category : Business & Economics
Languages : en
Pages : 404
Book Description
In science, industry, public administration and documentation centers large amounts of data and information are collected which must be analyzed, ordered, visualized, classified and stored efficiently in order to be useful for practical applications. This volume contains 50 selected theoretical and applied papers presenting a wealth of new and innovative ideas, methods, models and systems which can be used for this purpose. It combines papers and strategies from two main streams of research in an interdisciplinary, dynamic and exciting way: On the one hand, mathematical and statistical methods are described which allow a quantitative analysis of data, provide strategies for classifying objects or making exploratory searches for interesting structures, and give ways to make comprehensive graphical displays of large arrays of data. On the other hand, papers related to information sciences, informatics and data bank systems provide powerful tools for representing, modelling, storing and retrieving facts, data and knowledge characterized by qualitative descriptors, semantic relations, or linguistic concepts. The integration of both fields and a special part on applied problems from biology, medicine, archeology, industry and administration assure that this volume will be informative and useful for theory and practice.
Encyclopedia of Data Science and Machine Learning
Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.