Author: Ravindra Soni
Publisher: Springer Nature
ISBN: 3031556615
Category :
Languages : en
Pages : 417
Book Description
Advanced Strategies for Biodegradation of Plastic Polymers
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation
Author: Robert J. Steffan
Publisher: Springer
ISBN: 9783319504322
Category : Science
Languages : en
Pages : 0
Book Description
In this book international experts discuss the state-of-the-art in the biological degradation of hydrocarbons to meet remedial or disposal goals. The work focuses on practical applications, often on globally important scales including the remediation of some of the world’s largest crude oil spills. Other related chapters discuss important implications of microbial transformation of hydrocarbons, including treatment of high fat processing wastes, impacts of microbial biodegradation activity on industrial processes, and the implications of microbial oil degradation in relation to modern oil extraction processes like hydraulic fracturing of shales and extraction of oil sands.
Publisher: Springer
ISBN: 9783319504322
Category : Science
Languages : en
Pages : 0
Book Description
In this book international experts discuss the state-of-the-art in the biological degradation of hydrocarbons to meet remedial or disposal goals. The work focuses on practical applications, often on globally important scales including the remediation of some of the world’s largest crude oil spills. Other related chapters discuss important implications of microbial transformation of hydrocarbons, including treatment of high fat processing wastes, impacts of microbial biodegradation activity on industrial processes, and the implications of microbial oil degradation in relation to modern oil extraction processes like hydraulic fracturing of shales and extraction of oil sands.
Sustainable Plastics
Author: Joseph P. Greene
Publisher: John Wiley & Sons
ISBN: 1118899806
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
Providing guidelines for implementing sustainable practices for traditional petroleum based plastics, biobased plastics, and recycled plastics, Sustainable Plastics and the Environment explains what sustainable plastics are, why sustainable plastics are needed, which sustainable plastics to use, and how manufacturing companies can integrate them into their manufacturing operations. A vital resource for practitioners, scientists, researchers, and students, the text includes impacts of plastics including Life Cycle Assessments (LCA) and sustainability strategies related to biobased plastics and petroleum based plastics as well as end-of-life options for petroleum and biobased plastics.
Publisher: John Wiley & Sons
ISBN: 1118899806
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
Providing guidelines for implementing sustainable practices for traditional petroleum based plastics, biobased plastics, and recycled plastics, Sustainable Plastics and the Environment explains what sustainable plastics are, why sustainable plastics are needed, which sustainable plastics to use, and how manufacturing companies can integrate them into their manufacturing operations. A vital resource for practitioners, scientists, researchers, and students, the text includes impacts of plastics including Life Cycle Assessments (LCA) and sustainability strategies related to biobased plastics and petroleum based plastics as well as end-of-life options for petroleum and biobased plastics.
Polymers and Other Advanced Materials
Author: Ting Joo Fai
Publisher: Springer Science & Business Media
ISBN: 1489905022
Category : Science
Languages : en
Pages : 770
Book Description
Proceedings of the Third International Conference on Frontiers of Polymers and Advanced Materials held in Kuala Lumpur, Malaysia, January 16-20, 1995
Publisher: Springer Science & Business Media
ISBN: 1489905022
Category : Science
Languages : en
Pages : 770
Book Description
Proceedings of the Third International Conference on Frontiers of Polymers and Advanced Materials held in Kuala Lumpur, Malaysia, January 16-20, 1995
Marine Anthropogenic Litter
Author: Melanie Bergmann
Publisher: Springer
ISBN: 3319165100
Category : Science
Languages : en
Pages : 456
Book Description
This book describes how man-made litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers contributed to the broad awareness of marine litter as a problem of global significance. The authors summarise more than five decades of marine litter research, which receives growing attention after the recent discovery of great oceanic garbage patches and the ubiquity of microscopic plastic particles in marine organisms and habitats. In 16 chapters, authors from all over the world have created a universal view on the diverse field of marine litter pollution, the biological impacts, dedicated research activities, and the various national and international legislative efforts to combat this environmental problem. They recommend future research directions necessary for a comprehensive understanding of this environmental issue and the development of efficient management strategies. This book addresses scientists, and it provides a solid knowledge base for policy makers, NGOs, and the broader public.
Publisher: Springer
ISBN: 3319165100
Category : Science
Languages : en
Pages : 456
Book Description
This book describes how man-made litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers contributed to the broad awareness of marine litter as a problem of global significance. The authors summarise more than five decades of marine litter research, which receives growing attention after the recent discovery of great oceanic garbage patches and the ubiquity of microscopic plastic particles in marine organisms and habitats. In 16 chapters, authors from all over the world have created a universal view on the diverse field of marine litter pollution, the biological impacts, dedicated research activities, and the various national and international legislative efforts to combat this environmental problem. They recommend future research directions necessary for a comprehensive understanding of this environmental issue and the development of efficient management strategies. This book addresses scientists, and it provides a solid knowledge base for policy makers, NGOs, and the broader public.
Bionanocomposites
Author: Carole Aimé
Publisher: John Wiley & Sons
ISBN: 1118942221
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
Beginning with a general overview of nanocomposites, Bionanocomposites: Integrating Biological Processes for Bio-inspired Nanotechnologies details the systems available in nature (nucleic acids, proteins, carbohydrates, lipids) that can be integrated within suitable inorganic matrices for specific applications. Describing the relationship between architecture, hierarchy and function, this book aims at pointing out how bio-systems can be key components of nanocomposites. The text then reviews the design principles, structures, functions and applications of bionanocomposites. It also includes a section presenting related technical methods to help readers identify and understand the most widely used analytical tools such as mass spectrometry, calorimetry, and impedance spectroscopy, among others.
Publisher: John Wiley & Sons
ISBN: 1118942221
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
Beginning with a general overview of nanocomposites, Bionanocomposites: Integrating Biological Processes for Bio-inspired Nanotechnologies details the systems available in nature (nucleic acids, proteins, carbohydrates, lipids) that can be integrated within suitable inorganic matrices for specific applications. Describing the relationship between architecture, hierarchy and function, this book aims at pointing out how bio-systems can be key components of nanocomposites. The text then reviews the design principles, structures, functions and applications of bionanocomposites. It also includes a section presenting related technical methods to help readers identify and understand the most widely used analytical tools such as mass spectrometry, calorimetry, and impedance spectroscopy, among others.
Handbook of Biodegradable Polymers
Author: Catia Bastioli
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 150151198X
Category : Science
Languages : en
Pages : 738
Book Description
This handbook covers characteristics, processability and application areas of biodegradable polymers, with key polymer family groups discussed. It explores the role of biodegradable polymers in different waste management practices including anaerobic digestion, and considers topics such as the different types of biorefineries for renewable monomers used in producing the building blocks for biodegradable polymers.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 150151198X
Category : Science
Languages : en
Pages : 738
Book Description
This handbook covers characteristics, processability and application areas of biodegradable polymers, with key polymer family groups discussed. It explores the role of biodegradable polymers in different waste management practices including anaerobic digestion, and considers topics such as the different types of biorefineries for renewable monomers used in producing the building blocks for biodegradable polymers.
Degradation of Plastics
Author: Inamuddin
Publisher: Materials Research Forum LLC
ISBN: 1644901323
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
The degradation of plastics is most important for the removal and recycling of plastic wastes. The book presents a comprehensive overview of the field. Topics covered include plastic degradation methods, mechanistic actions, biodegradation, involvement of enzymes, photocatalytic degradation and the use of cyanobacteria. Also covered are the market of degradable plastics and the environmental implications. Keywords: Degradable Plastics, Bioplastics, Biodegradable Plastics, Enzymes, Cyanobacteria, Photocatalytic Degradation, Wastewater Treatment, Degradable Plastic Market, Polyethylene, Polypropylene, Polystyrene, Polyvinyl Chloride, Polyurethane, and Polyethylene Terephthalate.
Publisher: Materials Research Forum LLC
ISBN: 1644901323
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
The degradation of plastics is most important for the removal and recycling of plastic wastes. The book presents a comprehensive overview of the field. Topics covered include plastic degradation methods, mechanistic actions, biodegradation, involvement of enzymes, photocatalytic degradation and the use of cyanobacteria. Also covered are the market of degradable plastics and the environmental implications. Keywords: Degradable Plastics, Bioplastics, Biodegradable Plastics, Enzymes, Cyanobacteria, Photocatalytic Degradation, Wastewater Treatment, Degradable Plastic Market, Polyethylene, Polypropylene, Polystyrene, Polyvinyl Chloride, Polyurethane, and Polyethylene Terephthalate.
Biodegradation of Plastics
Author: Zhanyong Wang
Publisher: Frontiers Media SA
ISBN: 2832539459
Category : Science
Languages : en
Pages : 109
Book Description
The consumption of plastic products has increased significantly with the rapid development of the global economy. The total output of virgin plastics has already reached eight billion tons, and the annual global plastic consumption has reached 2.8 billion tons. In parallel with this high consumption rate, a staggering amount of plastic waste is generated annually. As a consequence of incorrect disposal of waste plastics and plastic longevity, this plastic waste is accumulating in the environment at an increasing rate. Moreover, since most plastic waste is corrosion resistant, these plastics do not decompose in the natural environment and can cause serious environmental pollution. In particular, petroleum-based synthetic polymers, including polyethylene, polyvinyl chloride, polystyrene, polypropylene, polyethylene terephthalate, and polyurethanes need hundreds of years to completely degrade in the natural environment. Moreover, although some aliphatic polyesters, such as polybutylene succinate, polycaprolactone, and polylactic acid are considered biodegradable, degradation of these plastics occurs only under specific microorganism activity and under specific conditions. Sometimes the apparent degradation is initiated by hydrolytic activity and not microorganism or enzymatic activity. Large-scale synthesis and application of plastics only began after 1950. Hence, the time span of plastic exposure in the environment has been too short for the adaptive evolution of natural microorganisms. Indeed, natural microorganisms showing high specificity for plastics and a high degradation efficiency are extremely scarce. Because of the inability of most natural microorganisms to recognize and degrade plastics, enzymes that can specifically degrade plastics are also scarce. Many of the enzymes which are known have either an unclear mechanism of the action on the polymer, a poor affinity for their substrates, a low efficiency, or enzyme production yield is currently low. To address these problems, new biotechnology strategies need to be implemented. In particular, new microorganisms and their enzymes need to be identified, and pathways for plastic degradation and molecular modification need to be clarified to enhance the activity and stability of the degrading enzymes. The current Research Topic aims to cover the recent and novel research trends in the development of plastics biodegradation (including petroleum-based plastics and bio-based plastics) under soil, composted, microbial and enzymatic conditions. The recycling technology of degraded products is also of interest.
Publisher: Frontiers Media SA
ISBN: 2832539459
Category : Science
Languages : en
Pages : 109
Book Description
The consumption of plastic products has increased significantly with the rapid development of the global economy. The total output of virgin plastics has already reached eight billion tons, and the annual global plastic consumption has reached 2.8 billion tons. In parallel with this high consumption rate, a staggering amount of plastic waste is generated annually. As a consequence of incorrect disposal of waste plastics and plastic longevity, this plastic waste is accumulating in the environment at an increasing rate. Moreover, since most plastic waste is corrosion resistant, these plastics do not decompose in the natural environment and can cause serious environmental pollution. In particular, petroleum-based synthetic polymers, including polyethylene, polyvinyl chloride, polystyrene, polypropylene, polyethylene terephthalate, and polyurethanes need hundreds of years to completely degrade in the natural environment. Moreover, although some aliphatic polyesters, such as polybutylene succinate, polycaprolactone, and polylactic acid are considered biodegradable, degradation of these plastics occurs only under specific microorganism activity and under specific conditions. Sometimes the apparent degradation is initiated by hydrolytic activity and not microorganism or enzymatic activity. Large-scale synthesis and application of plastics only began after 1950. Hence, the time span of plastic exposure in the environment has been too short for the adaptive evolution of natural microorganisms. Indeed, natural microorganisms showing high specificity for plastics and a high degradation efficiency are extremely scarce. Because of the inability of most natural microorganisms to recognize and degrade plastics, enzymes that can specifically degrade plastics are also scarce. Many of the enzymes which are known have either an unclear mechanism of the action on the polymer, a poor affinity for their substrates, a low efficiency, or enzyme production yield is currently low. To address these problems, new biotechnology strategies need to be implemented. In particular, new microorganisms and their enzymes need to be identified, and pathways for plastic degradation and molecular modification need to be clarified to enhance the activity and stability of the degrading enzymes. The current Research Topic aims to cover the recent and novel research trends in the development of plastics biodegradation (including petroleum-based plastics and bio-based plastics) under soil, composted, microbial and enzymatic conditions. The recycling technology of degraded products is also of interest.
Management of Micro and Nano-plastics in Soil and Biosolids
Author: Sartaj Ahmad Bhat
Publisher: Springer Nature
ISBN: 3031519671
Category :
Languages : en
Pages : 451
Book Description
Publisher: Springer Nature
ISBN: 3031519671
Category :
Languages : en
Pages : 451
Book Description