Advanced Spray and Combustion Modelling

Advanced Spray and Combustion Modelling PDF Author: Ahmed Abed Al-Kadhem Majhool
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis presents work across three different subjects of investigations into the modelling of spray development and its interaction with non-reactive and reactive flow. The first part of this research is aimed to create a new and robust family of convective scheme to capture the interface between the dispersed and the carrier phases without the need to build up the interface boundary. The selection of Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. However in the next step, the high resolution scheme is blended with the scheme to provide the sharpness and boundedness of the interface by using switching strategy. The proposed scheme is tested on capturing the spray edges in modelling hollow cone type sprays without need to reconstruct two-phase interface. A test comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow on hollow cone spray is presented. Results show that the WAF scheme gives better prediction than the TVD scheme. The only way to check the accuracy of the presented models are evaluations according to physical droplets behaviour and its interaction with air. In the second part, due to the effect of evaporation the temperature profile in the released fuel vapour has been proposed. The underlying equation utilizes transported vapour mass fraction. It can be used along with the solution of heat transfer inside a sphere. After applying boundary conditions, the equation can provide a solution of existing conditions at liquid-gas interface undergoing evaporation and it is put in a form similar to well-known one-third rule equation. The resulting equation is quadratic type that gives an accurate prediction for the thermo-physical properties due to the non-linear relation between measured properties and temperature. Comparisons are made with one-third rule where both equations are implemented in simulating hollow cone spray under evaporation conditions. The results show the presumed equation performs better than one-third rule in all comparisons. The third part of this research is about a conceptual model for turbulent spray combustion for two combustion regimes that has been proposed and tested for n-heptane solid cone spray type injected into a high-pressure, high-temperature open reactor by comparing to the available experimental data and to results obtained using two well known combustion models named the Combined Combustion Model (CCM) and the unsteady two-dimensional conditional moment closure (CMC) model. A single-zone intermittent beta-two equation turbulent model is suggested to characterise the Lumped zone. This model can handle both unburned and burned zones. Intermittency theory is used to account for the spatially non-uniform distribution of viscous dissipation. The model suggests that the Lumped zone can be identified by using the concept of Tennekes and Kuo-Corrsion of isotropic turbulence that suggests that dissipative eddies are most probably formed as vortex tubes with a diameter of the order of Kolmogorov length scale and a space of the order of Taylor length scale. Due to the complexity of mixture motion in the combustion chamber, there exist coherent turbulent small scale structures containing highly dissipative vortices. The small size eddies play an important role in extinguishing a diffusion spray flame and have an effect on the combustion reaction at molecular scale because small scales turbulence increase heat transfer due to the dissipation. A common hypothesis in constructing part of the model is if the Kolmogorov length scale is larger than the turbulent flame thickness. The Lumped strategy benefits from capturing small reactive scales information provided by numerics to improve the modelling and understand the exact implementation of the underlying chemical hypothesis. The Lumped rate is estimated from the ratio of the turbulent diffusion to reaction flame thickness. Three different initial gas temperature test cases are implemented in simulations. Lumped spray combustion model shows a very good agreement with available experimental data concerning auto-ignition delay points.

Advanced Spray and Combustion Modelling

Advanced Spray and Combustion Modelling PDF Author: Ahmed Abed Al-Kadhem Majhool
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The thesis presents work across three different subjects of investigations into the modelling of spray development and its interaction with non-reactive and reactive flow. The first part of this research is aimed to create a new and robust family of convective scheme to capture the interface between the dispersed and the carrier phases without the need to build up the interface boundary. The selection of Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. However in the next step, the high resolution scheme is blended with the scheme to provide the sharpness and boundedness of the interface by using switching strategy. The proposed scheme is tested on capturing the spray edges in modelling hollow cone type sprays without need to reconstruct two-phase interface. A test comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow on hollow cone spray is presented. Results show that the WAF scheme gives better prediction than the TVD scheme. The only way to check the accuracy of the presented models are evaluations according to physical droplets behaviour and its interaction with air. In the second part, due to the effect of evaporation the temperature profile in the released fuel vapour has been proposed. The underlying equation utilizes transported vapour mass fraction. It can be used along with the solution of heat transfer inside a sphere. After applying boundary conditions, the equation can provide a solution of existing conditions at liquid-gas interface undergoing evaporation and it is put in a form similar to well-known one-third rule equation. The resulting equation is quadratic type that gives an accurate prediction for the thermo-physical properties due to the non-linear relation between measured properties and temperature. Comparisons are made with one-third rule where both equations are implemented in simulating hollow cone spray under evaporation conditions. The results show the presumed equation performs better than one-third rule in all comparisons. The third part of this research is about a conceptual model for turbulent spray combustion for two combustion regimes that has been proposed and tested for n-heptane solid cone spray type injected into a high-pressure, high-temperature open reactor by comparing to the available experimental data and to results obtained using two well known combustion models named the Combined Combustion Model (CCM) and the unsteady two-dimensional conditional moment closure (CMC) model. A single-zone intermittent beta-two equation turbulent model is suggested to characterise the Lumped zone. This model can handle both unburned and burned zones. Intermittency theory is used to account for the spatially non-uniform distribution of viscous dissipation. The model suggests that the Lumped zone can be identified by using the concept of Tennekes and Kuo-Corrsion of isotropic turbulence that suggests that dissipative eddies are most probably formed as vortex tubes with a diameter of the order of Kolmogorov length scale and a space of the order of Taylor length scale. Due to the complexity of mixture motion in the combustion chamber, there exist coherent turbulent small scale structures containing highly dissipative vortices. The small size eddies play an important role in extinguishing a diffusion spray flame and have an effect on the combustion reaction at molecular scale because small scales turbulence increase heat transfer due to the dissipation. A common hypothesis in constructing part of the model is if the Kolmogorov length scale is larger than the turbulent flame thickness. The Lumped strategy benefits from capturing small reactive scales information provided by numerics to improve the modelling and understand the exact implementation of the underlying chemical hypothesis. The Lumped rate is estimated from the ratio of the turbulent diffusion to reaction flame thickness. Three different initial gas temperature test cases are implemented in simulations. Lumped spray combustion model shows a very good agreement with available experimental data concerning auto-ignition delay points.

Modeling Engine Spray and Combustion Processes

Modeling Engine Spray and Combustion Processes PDF Author: Gunnar Stiesch
Publisher: Springer Science & Business Media
ISBN: 3662087901
Category : Computers
Languages : en
Pages : 293

Get Book Here

Book Description
The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.

Advanced Models for Turbulent Spray and Combustion Simulations

Advanced Models for Turbulent Spray and Combustion Simulations PDF Author: Abolfazl Irannejad
Publisher:
ISBN: 9781303624537
Category : Conservation biology
Languages : en
Pages : 214

Get Book Here

Book Description


Advanced Models for Turbulent Spray and Combustion Simulations

Advanced Models for Turbulent Spray and Combustion Simulations PDF Author: Abolfazl Irannejad
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659765544
Category :
Languages : en
Pages : 244

Get Book Here

Book Description
A high-fidelity two-phase large eddy simulation (LES)/filtered mass density function (FMDF) model is developed and used for detailed simulations of turbulent spray breakup, evaporation and combustion. The spray is simulated with Lagrangian droplet transport, stochastic breakup, wake, collision/coalescence and finite rate heat and mass transfer submodels. The spray/droplet model is used together with a compressible LES gas flow model for numerical simulations of high pressure liquid jets sprayed into a high temperature and pressure gas chamber. The developed spray LES model is coupled with the two-phase FMDF model for simulation of high speed spray combustion. The FMDF is a subgrid-scale probability density function (PDF) model for LES of turbulent reacting fows and is obtained by the solution of a set of stochastic differential equations by a Lagrangian Monte Carlo method. Complex skeletal kinetics models are used for the chemical reaction together with in situ adaptive tabulation (ISAT) and chemistry workload balancing for efficient parallel computations.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion PDF Author: Santanu De
Publisher: Springer
ISBN: 9811074100
Category : Science
Languages : en
Pages : 663

Get Book Here

Book Description
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Advanced Modelling of Spray Combustion Processes in Airbreathing Propulsion Combustors

Advanced Modelling of Spray Combustion Processes in Airbreathing Propulsion Combustors PDF Author: T.L. Jiang
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description


Current Status of Spray Combustion Modelling

Current Status of Spray Combustion Modelling PDF Author: William A. Sirignano
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Advanced Turbulent Combustion Physics and Applications

Advanced Turbulent Combustion Physics and Applications PDF Author: N. Swaminathan
Publisher: Cambridge University Press
ISBN: 1108497969
Category : Science
Languages : en
Pages : 485

Get Book Here

Book Description
Explore a thorough overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application.

Coarse Grained Simulation and Turbulent Mixing

Coarse Grained Simulation and Turbulent Mixing PDF Author: Fenando F. Grinstein
Publisher: Cambridge University Press
ISBN: 1107137047
Category : Science
Languages : en
Pages : 481

Get Book Here

Book Description
Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.

Advanced Combustion Science

Advanced Combustion Science PDF Author: Tsuneo Someya
Publisher: Springer Science & Business Media
ISBN: 4431682287
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
Non-uniform combustion, as encountered in diesel and gas turbine engines, furnaces, and boilers, is responsible for the conversion of fossil fuel to energy and also for the corresponding formation of pollutants. In spite of great research efforts in the past, the mechanism of non-uniform combustion has remained less explored than that of other combustion types, since it consists of many, mostly transient processes which influence each other. In view of this background, a group research project, "Exploration of Combustion Mechanism", was established to explore the mechanism of combustion, especially that of diffusive combustion, and also to find efficient ways to control the combustion process for better utilization of fuel and the reduction of pollutant emission. The group research was started, after preparatory activity of 2 years, in April 1988, for a period of 3 years, as a project with a Grant-in-Aid for Scientific Research of Priority Area subsidized by the Ministry of Education, Science and Culture of Japan. The entire group of 43 members was set up as an organizing committee of 13 members, and five research groups, consisting of 36 members. The research groups were: (1) Steady combustion, (2) Unsteady spray combustion, (3) Control of combustion, (4) Chemistry of combustion, and (5) Effects of fuels. At the beginning of the project it was agreed that we should pursue the mechanism of combustion from a scientific viewpoint, namely, the target of the project was to obtain the fundamentals, or "know why", rather than "know how" of combustion.