Advanced Methods and Deep Learning in Computer Vision

Advanced Methods and Deep Learning in Computer Vision PDF Author: E. R. Davies
Publisher: Academic Press
ISBN: 0128221496
Category : Technology & Engineering
Languages : en
Pages : 584

Get Book Here

Book Description
Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses

Advanced Methods and Deep Learning in Computer Vision

Advanced Methods and Deep Learning in Computer Vision PDF Author: E. R. Davies
Publisher: Academic Press
ISBN: 0128221496
Category : Technology & Engineering
Languages : en
Pages : 584

Get Book Here

Book Description
Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses

Deep Learning for Computer Vision

Deep Learning for Computer Vision PDF Author: Rajalingappaa Shanmugamani
Publisher: Packt Publishing Ltd
ISBN: 1788293355
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.

Deep Learning in Computer Vision

Deep Learning in Computer Vision PDF Author: Mahmoud Hassaballah
Publisher: CRC Press
ISBN: 1351003801
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Mastering Computer Vision with TensorFlow 2.x

Mastering Computer Vision with TensorFlow 2.x PDF Author: Krishnendu Kar
Publisher: Packt Publishing Ltd
ISBN: 1838826939
Category : Computers
Languages : en
Pages : 419

Get Book Here

Book Description
Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language Key FeaturesGain a fundamental understanding of advanced computer vision and neural network models in use todayCover tasks such as low-level vision, image classification, and object detectionDevelop deep learning models on cloud platforms and optimize them using TensorFlow Lite and the OpenVINO toolkitBook Description Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks. What you will learnExplore methods of feature extraction and image retrieval and visualize different layers of the neural network modelUse TensorFlow for various visual search methods for real-world scenariosBuild neural networks or adjust parameters to optimize the performance of modelsUnderstand TensorFlow DeepLab to perform semantic segmentation on images and DCGAN for image inpaintingEvaluate your model and optimize and integrate it into your application to operate at scaleGet up to speed with techniques for performing manual and automated image annotationWho this book is for This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.

Computer Vision

Computer Vision PDF Author: Simon J. D. Prince
Publisher: Cambridge University Press
ISBN: 1107011795
Category : Computers
Languages : en
Pages : 599

Get Book Here

Book Description
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.

Deep Learning for Computer Vision

Deep Learning for Computer Vision PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Challenges and Applications for Implementing Machine Learning in Computer Vision

Challenges and Applications for Implementing Machine Learning in Computer Vision PDF Author: Kashyap, Ramgopal
Publisher: IGI Global
ISBN: 1799801845
Category : Computers
Languages : en
Pages : 318

Get Book Here

Book Description
Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.

Machine Learning in Computer Vision

Machine Learning in Computer Vision PDF Author: Nicu Sebe
Publisher: Springer Science & Business Media
ISBN: 1402032757
Category : Computers
Languages : en
Pages : 253

Get Book Here

Book Description
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.

Deep Learning

Deep Learning PDF Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801

Get Book Here

Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Advanced Deep Learning Applications in Big Data Analytics

Advanced Deep Learning Applications in Big Data Analytics PDF Author: Bouarara, Hadj Ahmed
Publisher: IGI Global
ISBN: 1799827933
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.