Author: William P. Fox
Publisher: CRC Press
ISBN: 1000388867
Category : Mathematics
Languages : en
Pages : 573
Book Description
Mathematical modeling is both a skill and an art and must be practiced in order to maintain and enhance the ability to use those skills. Though the topics covered in this book are the typical topics of most mathematical modeling courses, this book is best used for individuals or groups who have already taken an introductory mathematical modeling course. This book will be of interest to instructors and students offering courses focused on discrete modeling or modeling for decision making.
Advanced Mathematical Modeling with Technology
Author: William P. Fox
Publisher: CRC Press
ISBN: 1000388867
Category : Mathematics
Languages : en
Pages : 573
Book Description
Mathematical modeling is both a skill and an art and must be practiced in order to maintain and enhance the ability to use those skills. Though the topics covered in this book are the typical topics of most mathematical modeling courses, this book is best used for individuals or groups who have already taken an introductory mathematical modeling course. This book will be of interest to instructors and students offering courses focused on discrete modeling or modeling for decision making.
Publisher: CRC Press
ISBN: 1000388867
Category : Mathematics
Languages : en
Pages : 573
Book Description
Mathematical modeling is both a skill and an art and must be practiced in order to maintain and enhance the ability to use those skills. Though the topics covered in this book are the typical topics of most mathematical modeling courses, this book is best used for individuals or groups who have already taken an introductory mathematical modeling course. This book will be of interest to instructors and students offering courses focused on discrete modeling or modeling for decision making.
Mathematical Modelling in Science and Technology
Author: Xavier J.R. Avula
Publisher: Elsevier
ISBN: 1483190595
Category : Mathematics
Languages : en
Pages : 1023
Book Description
Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.
Publisher: Elsevier
ISBN: 1483190595
Category : Mathematics
Languages : en
Pages : 1023
Book Description
Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.
Introduction to Mathematical Modeling
Author: Mayer Humi
Publisher: CRC Press
ISBN: 1498728022
Category : Mathematics
Languages : en
Pages : 418
Book Description
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
Publisher: CRC Press
ISBN: 1498728022
Category : Mathematics
Languages : en
Pages : 418
Book Description
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes
Author: Cornelis W Oosterlee
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310
Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310
Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences
Author: Giovanni Naldi
Publisher: Springer Science & Business Media
ISBN: 0817649468
Category : Mathematics
Languages : en
Pages : 437
Book Description
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
Publisher: Springer Science & Business Media
ISBN: 0817649468
Category : Mathematics
Languages : en
Pages : 437
Book Description
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
An Introduction to Mathematical Modeling
Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486137120
Category : Mathematics
Languages : en
Pages : 273
Book Description
Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.
Publisher: Courier Corporation
ISBN: 0486137120
Category : Mathematics
Languages : en
Pages : 273
Book Description
Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.
Mathematical Modeling
Author: Jonas Hall
Publisher: John Wiley & Sons
ISBN: 1119102693
Category : Mathematics
Languages : en
Pages : 571
Book Description
A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
Publisher: John Wiley & Sons
ISBN: 1119102693
Category : Mathematics
Languages : en
Pages : 571
Book Description
A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations. Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes: Over 400 diagrams and 300 GeoGebra examples with practical approaches to mathematical modeling that help the reader develop a full understanding of the content Numerous real-world exercises with solutions to help readers learn mathematical modeling techniques A companion website with GeoGebra constructions and screencasts Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
Mathematical Modeling of Natural Phenomena
Author: Ranis Ibragimov
Publisher:
ISBN: 9781536129779
Category : Differential equations
Languages : en
Pages : 0
Book Description
Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.
Publisher:
ISBN: 9781536129779
Category : Differential equations
Languages : en
Pages : 0
Book Description
Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.
Methods of Mathematical Modelling
Author: Thomas Witelski
Publisher: Springer
ISBN: 3319230425
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Publisher: Springer
ISBN: 3319230425
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Mathematical Modeling in the Age of the Pandemic
Author: William P. Fox
Publisher: CRC Press
ISBN: 1000395022
Category : Mathematics
Languages : en
Pages : 175
Book Description
One cannot watch or read about the news these days without hearing about the models for COVID-19 or the testing that must occur to approve vaccines or treatments for the disease. The purpose of Mathematical Modeling in the Age of a Pandemic is to shed some light on the meaning and interpretations of many of the types of models that are or might be used in the presentation of analysis. Understanding the concepts presented is essential in the entire modeling process of a pandemic. From the virus itself and its infectious rates and deaths rates to explain the process for testing a vaccine or eventually a cure, the author builds, presents, and shows model testing. This book is an attempt, based on available data, to add some validity to the models developed and used, showing how close to reality the models are to predicting "results" from previous pandemics such as the Spanish flu in 1918 and more recently the Hong Kong flu. Then the author applies those same models to Italy, New York City, and the United States as a whole. Modeling is a process. It is essential to understand that there are many assumptions that go into the modeling of each type of model. The assumptions influence the interpretation of the results. Regardless of the modeling approach the results generally indicate approximately the same results. This book reveals how these interesting results are obtained.
Publisher: CRC Press
ISBN: 1000395022
Category : Mathematics
Languages : en
Pages : 175
Book Description
One cannot watch or read about the news these days without hearing about the models for COVID-19 or the testing that must occur to approve vaccines or treatments for the disease. The purpose of Mathematical Modeling in the Age of a Pandemic is to shed some light on the meaning and interpretations of many of the types of models that are or might be used in the presentation of analysis. Understanding the concepts presented is essential in the entire modeling process of a pandemic. From the virus itself and its infectious rates and deaths rates to explain the process for testing a vaccine or eventually a cure, the author builds, presents, and shows model testing. This book is an attempt, based on available data, to add some validity to the models developed and used, showing how close to reality the models are to predicting "results" from previous pandemics such as the Spanish flu in 1918 and more recently the Hong Kong flu. Then the author applies those same models to Italy, New York City, and the United States as a whole. Modeling is a process. It is essential to understand that there are many assumptions that go into the modeling of each type of model. The assumptions influence the interpretation of the results. Regardless of the modeling approach the results generally indicate approximately the same results. This book reveals how these interesting results are obtained.