Graph Algorithms

Graph Algorithms PDF Author: Mark Needham
Publisher: "O'Reilly Media, Inc."
ISBN: 1492047635
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Graph Algorithms

Graph Algorithms PDF Author: Mark Needham
Publisher: "O'Reilly Media, Inc."
ISBN: 1492047635
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Exact Exponential Algorithms

Exact Exponential Algorithms PDF Author: Fedor V. Fomin
Publisher: Springer Science & Business Media
ISBN: 3642165338
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP complete problems. Most likely there are no polynomial time al gorithms solving these hard problems and in the worst case scenario the exponential running time is unavoidable. Every combinatorial problem is solvable in ?nite time by enumerating all possi ble solutions, i. e. by brute force search. But is brute force search always unavoid able? De?nitely not. Already in the nineteen sixties and seventies it was known that some NP complete problems can be solved signi?cantly faster than by brute force search. Three classic examples are the following algorithms for the TRAVELLING SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING.

Algorithms on Trees and Graphs

Algorithms on Trees and Graphs PDF Author: Gabriel Valiente
Publisher: Springer Science & Business Media
ISBN: 366204921X
Category : Computers
Languages : en
Pages : 492

Get Book Here

Book Description
Graph algorithms is a well-established subject in mathematics and computer science. Beyond classical application fields, such as approximation, combinatorial optimization, graphics, and operations research, graph algorithms have recently attracted increased attention from computational molecular biology and computational chemistry. Centered around the fundamental issue of graph isomorphism, this text goes beyond classical graph problems of shortest paths, spanning trees, flows in networks, and matchings in bipartite graphs. Advanced algorithmic results and techniques of practical relevance are presented in a coherent and consolidated way. This book introduces graph algorithms on an intuitive basis followed by a detailed exposition in a literate programming style, with correctness proofs as well as worst-case analyses. Furthermore, full C++ implementations of all algorithms presented are given using the LEDA library of efficient data structures and algorithms.

advanced graph algorithms

advanced graph algorithms PDF Author:
Publisher: Kloks
ISBN:
Category :
Languages : en
Pages : 109

Get Book Here

Book Description


Guide to Graph Algorithms

Guide to Graph Algorithms PDF Author: K Erciyes
Publisher: Springer
ISBN: 3319732358
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
This clearly structured textbook/reference presents a detailed and comprehensive review of the fundamental principles of sequential graph algorithms, approaches for NP-hard graph problems, and approximation algorithms and heuristics for such problems. The work also provides a comparative analysis of sequential, parallel and distributed graph algorithms – including algorithms for big data – and an investigation into the conversion principles between the three algorithmic methods. Topics and features: presents a comprehensive analysis of sequential graph algorithms; offers a unifying view by examining the same graph problem from each of the three paradigms of sequential, parallel and distributed algorithms; describes methods for the conversion between sequential, parallel and distributed graph algorithms; surveys methods for the analysis of large graphs and complex network applications; includes full implementation details for the problems presented throughout the text; provides additional supporting material at an accompanying website. This practical guide to the design and analysis of graph algorithms is ideal for advanced and graduate students of computer science, electrical and electronic engineering, and bioinformatics. The material covered will also be of value to any researcher familiar with the basics of discrete mathematics, graph theory and algorithms.

Graph Theory with Applications

Graph Theory with Applications PDF Author: John Adrian Bondy
Publisher: London : Macmillan Press
ISBN:
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description


Graphs, Networks and Algorithms

Graphs, Networks and Algorithms PDF Author: Dieter Jungnickel
Publisher: Springer Science & Business Media
ISBN: 3662038226
Category : Mathematics
Languages : en
Pages : 597

Get Book Here

Book Description
Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed

Algorithms on Trees and Graphs

Algorithms on Trees and Graphs PDF Author: Gabriel Valiente
Publisher: Springer Nature
ISBN: 3030818853
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Graph algorithms is a well-established subject in mathematics and computer science. Beyond classical application fields, such as approximation, combinatorial optimization, graphics, and operations research, graph algorithms have recently attracted increased attention from computational molecular biology and computational chemistry. Centered around the fundamental issue of graph isomorphism, this text goes beyond classical graph problems of shortest paths, spanning trees, flows in networks, and matchings in bipartite graphs. Advanced algorithmic results and techniques of practical relevance are presented in a coherent and consolidated way. This book introduces graph algorithms on an intuitive basis followed by a detailed exposition in a literate programming style, with correctness proofs as well as worst-case analyses. Furthermore, full C++ implementations of all algorithms presented are given using the LEDA library of efficient data structures and algorithms.

Graph Algorithms in the Language of Linear Algebra

Graph Algorithms in the Language of Linear Algebra PDF Author: Jeremy Kepner
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.

Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures PDF Author: Marcello La Rocca
Publisher: Simon and Schuster
ISBN: 1638350221
Category : Computers
Languages : en
Pages : 768

Get Book Here

Book Description
Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization