Author: Roger A. Johnson
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Advanced Euclidean Geometry
Author: Roger A. Johnson
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Publisher: Courier Corporation
ISBN: 048615498X
Category : Mathematics
Languages : en
Pages : 338
Book Description
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Exploring Advanced Euclidean Geometry with GeoGebra
Author: Gerard A. Venema
Publisher: American Mathematical Soc.
ISBN: 0883857847
Category : Mathematics
Languages : en
Pages : 147
Book Description
This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincare disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.
Publisher: American Mathematical Soc.
ISBN: 0883857847
Category : Mathematics
Languages : en
Pages : 147
Book Description
This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincare disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.
Problems and Solutions in Euclidean Geometry
Author: M. N. Aref
Publisher: Courier Corporation
ISBN: 0486477207
Category : Mathematics
Languages : en
Pages : 274
Book Description
Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486477207
Category : Mathematics
Languages : en
Pages : 274
Book Description
Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.
Modern Geometry
Author: Roger Arthur Johnson
Publisher:
ISBN:
Category : Circle
Languages : en
Pages : 344
Book Description
Publisher:
ISBN:
Category : Circle
Languages : en
Pages : 344
Book Description
Euclidean Geometry and Transformations
Author: Clayton W. Dodge
Publisher: Courier Corporation
ISBN: 0486138429
Category : Mathematics
Languages : en
Pages : 306
Book Description
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
Publisher: Courier Corporation
ISBN: 0486138429
Category : Mathematics
Languages : en
Pages : 306
Book Description
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
The Advanced Geometry of Plane Curves and Their Applications
Author: C. Zwikker
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Publisher: Courier Corporation
ISBN: 0486153436
Category : Mathematics
Languages : en
Pages : 316
Book Description
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.
Taxicab Geometry
Author: Eugene F. Krause
Publisher: Courier Corporation
ISBN: 048613606X
Category : Mathematics
Languages : en
Pages : 99
Book Description
Fascinating, accessible introduction to unusual mathematical system in which distance is not measured by straight lines. Illustrated topics include applications to urban geography and comparisons to Euclidean geometry. Selected answers to problems.
Publisher: Courier Corporation
ISBN: 048613606X
Category : Mathematics
Languages : en
Pages : 99
Book Description
Fascinating, accessible introduction to unusual mathematical system in which distance is not measured by straight lines. Illustrated topics include applications to urban geography and comparisons to Euclidean geometry. Selected answers to problems.
College Geometry
Author: Nathan Altshiller-Court
Publisher: Dover Publications
ISBN: 9780486788470
Category :
Languages : en
Pages : 336
Book Description
The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.
Publisher: Dover Publications
ISBN: 9780486788470
Category :
Languages : en
Pages : 336
Book Description
The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.
Advanced Euclidian Geometry
Author: Alfred S. Posamentier
Publisher: Springer Science & Business Media
ISBN: 9781930190856
Category : Mathematics
Languages : en
Pages : 276
Book Description
Advanced Euclidean Geometry provides a thorough review of the essentials of high school geometry and then expands those concepts to advanced Euclidean geometry, to give teachers more confidence in guiding student explorations and questions. The text contains hundreds of illustrations created in The Geometer's Sketchpad Dynamic Geometry® software. It is packaged with a CD-ROM containing over 100 interactive sketches using SketchpadTM (assumes that the user has access to the program).
Publisher: Springer Science & Business Media
ISBN: 9781930190856
Category : Mathematics
Languages : en
Pages : 276
Book Description
Advanced Euclidean Geometry provides a thorough review of the essentials of high school geometry and then expands those concepts to advanced Euclidean geometry, to give teachers more confidence in guiding student explorations and questions. The text contains hundreds of illustrations created in The Geometer's Sketchpad Dynamic Geometry® software. It is packaged with a CD-ROM containing over 100 interactive sketches using SketchpadTM (assumes that the user has access to the program).
Methods for Euclidean Geometry
Author: Owen Byer
Publisher: American Mathematical Soc.
ISBN: 0883857634
Category : Mathematics
Languages : en
Pages : 461
Book Description
Euclidean plane geometry is one of the oldest and most beautiful topics in mathematics. Instead of carefully building geometries from axiom sets, this book uses a wealth of methods to solve problems in Euclidean geometry. Many of these methods arose where existing techniques proved inadequate. In several cases, the new ideas used in solving specific problems later developed into independent areas of mathematics. This book is primarily a geometry textbook, but studying geometry in this way will also develop students' appreciation of the subject and of mathematics as a whole. For instance, despite the fact that the analytic method has been part of mathematics for four centuries, it is rarely a tool a student considers using when faced with a geometry problem. Methods for Euclidean Geometry explores the application of a broad range of mathematical topics to the solution of Euclidean problems.
Publisher: American Mathematical Soc.
ISBN: 0883857634
Category : Mathematics
Languages : en
Pages : 461
Book Description
Euclidean plane geometry is one of the oldest and most beautiful topics in mathematics. Instead of carefully building geometries from axiom sets, this book uses a wealth of methods to solve problems in Euclidean geometry. Many of these methods arose where existing techniques proved inadequate. In several cases, the new ideas used in solving specific problems later developed into independent areas of mathematics. This book is primarily a geometry textbook, but studying geometry in this way will also develop students' appreciation of the subject and of mathematics as a whole. For instance, despite the fact that the analytic method has been part of mathematics for four centuries, it is rarely a tool a student considers using when faced with a geometry problem. Methods for Euclidean Geometry explores the application of a broad range of mathematical topics to the solution of Euclidean problems.