Author: Patrick Cornille
Publisher: World Scientific
ISBN: 9789812795229
Category : Science
Languages : en
Pages : 798
Book Description
This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories. Contents: Wave Meaning of the Special Relativity Theory; Change of Reference Frame; Relativistic and Classical Mechanics; Experimental Tests of Special Relativity; Partial Differential Equations of Second Order; The Wave Packet Concept; Electromagnetism; Electromagnetic Induction; Amp re and Lorentz Forces; The Li(r)nardOCoWiechert Potential; Analysis of the Electromagnetic Field; Photonics Versus Electromagnetism; Radiation of Extended Sources; The Green Formulation; Wave Extinction in a Dielectric; Plasma Equation. Readership: Students and academics in advanced physics."
Advanced Electromagnetism and Vacuum Physics
Author: Patrick Cornille
Publisher: World Scientific
ISBN: 9789812795229
Category : Science
Languages : en
Pages : 798
Book Description
This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories. Contents: Wave Meaning of the Special Relativity Theory; Change of Reference Frame; Relativistic and Classical Mechanics; Experimental Tests of Special Relativity; Partial Differential Equations of Second Order; The Wave Packet Concept; Electromagnetism; Electromagnetic Induction; Amp re and Lorentz Forces; The Li(r)nardOCoWiechert Potential; Analysis of the Electromagnetic Field; Photonics Versus Electromagnetism; Radiation of Extended Sources; The Green Formulation; Wave Extinction in a Dielectric; Plasma Equation. Readership: Students and academics in advanced physics."
Publisher: World Scientific
ISBN: 9789812795229
Category : Science
Languages : en
Pages : 798
Book Description
This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories. Contents: Wave Meaning of the Special Relativity Theory; Change of Reference Frame; Relativistic and Classical Mechanics; Experimental Tests of Special Relativity; Partial Differential Equations of Second Order; The Wave Packet Concept; Electromagnetism; Electromagnetic Induction; Amp re and Lorentz Forces; The Li(r)nardOCoWiechert Potential; Analysis of the Electromagnetic Field; Photonics Versus Electromagnetism; Radiation of Extended Sources; The Green Formulation; Wave Extinction in a Dielectric; Plasma Equation. Readership: Students and academics in advanced physics."
Introduction to Advanced Electrodynamics
Author: Kaushik Bhattacharya
Publisher: Springer Nature
ISBN: 9811678022
Category : Science
Languages : en
Pages : 371
Book Description
This book summarizes the basics of electricity and magnetism prior to covariant formulation of Maxwell's equations. The book works out the basics of special relativity and then applies the covariant formalism to understand radiation, both in vacuum and in material medium. The emphasis is on cleaner mathematical formalism based on experimental facts. The book contains many problems/exercises which will help the students to understand the basics of the subject. The difference between the present book with existing books of this level lies in the presentation of the topics and the subjects chosen. Instead of presenting a lot of material related to electromagnetism, it presents some very important but selected problems of advanced electromagnetism to students who are learning it for the first time. This book is aimed at graduate/advanced graduate students who have done at least one basic level course in electricity and magnetism.
Publisher: Springer Nature
ISBN: 9811678022
Category : Science
Languages : en
Pages : 371
Book Description
This book summarizes the basics of electricity and magnetism prior to covariant formulation of Maxwell's equations. The book works out the basics of special relativity and then applies the covariant formalism to understand radiation, both in vacuum and in material medium. The emphasis is on cleaner mathematical formalism based on experimental facts. The book contains many problems/exercises which will help the students to understand the basics of the subject. The difference between the present book with existing books of this level lies in the presentation of the topics and the subjects chosen. Instead of presenting a lot of material related to electromagnetism, it presents some very important but selected problems of advanced electromagnetism to students who are learning it for the first time. This book is aimed at graduate/advanced graduate students who have done at least one basic level course in electricity and magnetism.
Advanced Electromagnetism: Foundations: Theory And Applications
Author: Terence William Barrett
Publisher: World Scientific
ISBN: 9814501085
Category : Science
Languages : en
Pages : 807
Book Description
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.
Publisher: World Scientific
ISBN: 9814501085
Category : Science
Languages : en
Pages : 807
Book Description
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.
Modern Electrodynamics
Author: Andrew Zangwill
Publisher: Cambridge University Press
ISBN: 0521896975
Category : Science
Languages : en
Pages : 1005
Book Description
An engaging writing style and a strong focus on the physics make this graduate-level textbook a must-have for electromagnetism students.
Publisher: Cambridge University Press
ISBN: 0521896975
Category : Science
Languages : en
Pages : 1005
Book Description
An engaging writing style and a strong focus on the physics make this graduate-level textbook a must-have for electromagnetism students.
The Langevin Equation
Author: William Coffey
Publisher: World Scientific
ISBN: 9814355674
Category : Mathematics
Languages : en
Pages : 850
Book Description
This volume is the third edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the translational and rotational Brownian motion of particles and spins in a potential highlighting modern applications in physics, chemistry, electrical engineering, and so on. In order to improve the presentation, to accommodate all the new developments, and to appeal to the specialized interests of the various communities involved, the book has been extensively rewritten and a very large amount of new material has been added. This has been done in order to present a comprehensive overview of the subject emphasizing via a synergetic approach that seemingly unrelated physical problems involving random noise may be described using virtually identical mathematical methods in the spirit of the founders of the subject, viz., Einstein, Langevin, Smoluchowski, Kramers, The book has been written in such a way that all the material should be accessible both to an advanced researcher and a beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of scattered research papers and review articles.
Publisher: World Scientific
ISBN: 9814355674
Category : Mathematics
Languages : en
Pages : 850
Book Description
This volume is the third edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the translational and rotational Brownian motion of particles and spins in a potential highlighting modern applications in physics, chemistry, electrical engineering, and so on. In order to improve the presentation, to accommodate all the new developments, and to appeal to the specialized interests of the various communities involved, the book has been extensively rewritten and a very large amount of new material has been added. This has been done in order to present a comprehensive overview of the subject emphasizing via a synergetic approach that seemingly unrelated physical problems involving random noise may be described using virtually identical mathematical methods in the spirit of the founders of the subject, viz., Einstein, Langevin, Smoluchowski, Kramers, The book has been written in such a way that all the material should be accessible both to an advanced researcher and a beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of scattered research papers and review articles.
Advanced Classical Electromagnetism
Author: Robert Wald
Publisher: Princeton University Press
ISBN: 0691220395
Category : Science
Languages : en
Pages : 248
Book Description
"This is a concise, beginning graduate-level textbook on classical electromagnetism, the branch of physics that describes the interaction of electric currents or fields and magnetic fields. Electromagnetism (also called electrodynamics) is one of the pillars of modern physics and, as such, of the modern physics curriculum, with courses on electromagnetism required at the undergraduate and graduate levels. These courses traditionally proceed in a quasi-historical fashion, starting from equations and laws that were first formulated in the eighteenth and nineteenth centuries and still form the foundations of our understanding of electromagnetism. However, as Robert Wald argues, teaching in this way can be imprecise and tends to promote outdated ways of thinking about the subject. This book rethinks how electromagnetism is presented at the graduate level, offering a corrective that aims to bring teaching up to date with our more modern understanding of the topic. The book begins by debunking four common misconceptions, or "myths," that can hinder a deep conceptual understanding of electromagnetism. Wald then proceeds through the major topics first-year grad courses (and textbooks) in electromagnetism typically cover, including electrostatics, dielectrics, magnetostatics, electrodynamics, geometric optics, special relativity, gauge theory, and point charge. Wald's aim throughout is to explain to students how to think about electromagnetism from a modern and mathematically precise perspective, formulating all the key conceptual ideas and results in the field clearly and concisely, while forgoing extensive collections of examples and applications. The book could be used as the basis for or as a supplement to a course, or for self-study by students seeking a deeper understanding than traditional courses and books offer"--
Publisher: Princeton University Press
ISBN: 0691220395
Category : Science
Languages : en
Pages : 248
Book Description
"This is a concise, beginning graduate-level textbook on classical electromagnetism, the branch of physics that describes the interaction of electric currents or fields and magnetic fields. Electromagnetism (also called electrodynamics) is one of the pillars of modern physics and, as such, of the modern physics curriculum, with courses on electromagnetism required at the undergraduate and graduate levels. These courses traditionally proceed in a quasi-historical fashion, starting from equations and laws that were first formulated in the eighteenth and nineteenth centuries and still form the foundations of our understanding of electromagnetism. However, as Robert Wald argues, teaching in this way can be imprecise and tends to promote outdated ways of thinking about the subject. This book rethinks how electromagnetism is presented at the graduate level, offering a corrective that aims to bring teaching up to date with our more modern understanding of the topic. The book begins by debunking four common misconceptions, or "myths," that can hinder a deep conceptual understanding of electromagnetism. Wald then proceeds through the major topics first-year grad courses (and textbooks) in electromagnetism typically cover, including electrostatics, dielectrics, magnetostatics, electrodynamics, geometric optics, special relativity, gauge theory, and point charge. Wald's aim throughout is to explain to students how to think about electromagnetism from a modern and mathematically precise perspective, formulating all the key conceptual ideas and results in the field clearly and concisely, while forgoing extensive collections of examples and applications. The book could be used as the basis for or as a supplement to a course, or for self-study by students seeking a deeper understanding than traditional courses and books offer"--
Classical Electromagnetism in a Nutshell
Author: Anupam Garg
Publisher: Princeton University Press
ISBN: 0691130183
Category : Science
Languages : en
Pages : 709
Book Description
A comprehensive, modern introduction to electromagnetism This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems
Publisher: Princeton University Press
ISBN: 0691130183
Category : Science
Languages : en
Pages : 709
Book Description
A comprehensive, modern introduction to electromagnetism This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons. Classical Electromagnetism in a Nutshell is ideal for a yearlong graduate course and features more than 300 problems, with solutions to many of the advanced ones. Key formulas are given in both SI and Gaussian units; the book includes a discussion of how to convert between them, making it accessible to adherents of both systems. Offers a complete treatment of classical electromagnetism Emphasizes physical ideas Separates the treatment of electromagnetism in vacuum and material media Presents key formulas in both SI and Gaussian units Covers applications to other areas of physics Includes more than 300 problems
Topological Foundations of Electromagnetism
Author: Terence W. Barrett
Publisher: World Scientific
ISBN: 9812779973
Category : Science
Languages : en
Pages : 196
Book Description
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell''s theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic fields is the fundamental conditioner of the dynamics of these fields. The treatment of electromagnetism from, first, a topological perspective, continuing through group theory and gauge theory, to a differential calculus description is a major thread of the book. Suggestions for potential new technologies based on this new understanding and approach to conditional electromagnetism are also given. Sample Chapter(s). Chapter 1: Electromagnetic Phenomena Not Explained by Maxwell''s Equations260 (437 KB). Contents: Electromagnetic Phenomena Not Explained by Maxwell''s Equations; The Sagnac Effect: A Consequence of Conservation of Action Due to Gauge Field Global Conformal Invariance in a Multiply Joined Topology of Coherent Fields; Topological Approaches to Electromagnetism. Readership: Physicists; advanced undergraduate and graduate students in physics; electrical engineers.
Publisher: World Scientific
ISBN: 9812779973
Category : Science
Languages : en
Pages : 196
Book Description
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell''s theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic fields is the fundamental conditioner of the dynamics of these fields. The treatment of electromagnetism from, first, a topological perspective, continuing through group theory and gauge theory, to a differential calculus description is a major thread of the book. Suggestions for potential new technologies based on this new understanding and approach to conditional electromagnetism are also given. Sample Chapter(s). Chapter 1: Electromagnetic Phenomena Not Explained by Maxwell''s Equations260 (437 KB). Contents: Electromagnetic Phenomena Not Explained by Maxwell''s Equations; The Sagnac Effect: A Consequence of Conservation of Action Due to Gauge Field Global Conformal Invariance in a Multiply Joined Topology of Coherent Fields; Topological Approaches to Electromagnetism. Readership: Physicists; advanced undergraduate and graduate students in physics; electrical engineers.
University Physics
Author: Samuel J. Ling
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Publisher:
ISBN: 9789888407613
Category : Science
Languages : en
Pages : 818
Book Description
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Langevin Equation, The: With Applications To Stochastic Problems In Physics, Chemistry And Electrical Engineering (Fourth Edition)
Author: William T Coffey
Publisher: World Scientific
ISBN: 9813222018
Category : Science
Languages : en
Pages : 927
Book Description
Our original objective in writing this book was to demonstrate how the concept of the equation of motion of a Brownian particle — the Langevin equation or Newtonian-like evolution equation of the random phase space variables describing the motion — first formulated by Langevin in 1908 — so making him inter alia the founder of the subject of stochastic differential equations, may be extended to solve the nonlinear problems arising from the Brownian motion in a potential. Such problems appear under various guises in many diverse applications in physics, chemistry, biology, electrical engineering, etc. However, they have been invariably treated (following the original approach of Einstein and Smoluchowski) via the Fokker-Planck equation for the evolution of the probability density function in phase space. Thus the more simple direct dynamical approach of Langevin which we use and extend here, has been virtually ignored as far as the Brownian motion in a potential is concerned. In addition two other considerations have driven us to write this new edition of The Langevin Equation. First, more than five years have elapsed since the publication of the third edition and following many suggestions and comments of our colleagues and other interested readers, it became increasingly evident to us that the book should be revised in order to give a better presentation of the contents. In particular, several chapters appearing in the third edition have been rewritten so as to provide a more direct appeal to the particular community involved and at the same time to emphasize via a synergetic approach how seemingly unrelated physical problems all involving random noise may be described using virtually identical mathematical methods. Secondly, in that period many new and exciting developments have occurred in the application of the Langevin equation to Brownian motion. Consequently, in order to accommodate all these, a very large amount of new material has been added so as to present a comprehensive overview of the subject.
Publisher: World Scientific
ISBN: 9813222018
Category : Science
Languages : en
Pages : 927
Book Description
Our original objective in writing this book was to demonstrate how the concept of the equation of motion of a Brownian particle — the Langevin equation or Newtonian-like evolution equation of the random phase space variables describing the motion — first formulated by Langevin in 1908 — so making him inter alia the founder of the subject of stochastic differential equations, may be extended to solve the nonlinear problems arising from the Brownian motion in a potential. Such problems appear under various guises in many diverse applications in physics, chemistry, biology, electrical engineering, etc. However, they have been invariably treated (following the original approach of Einstein and Smoluchowski) via the Fokker-Planck equation for the evolution of the probability density function in phase space. Thus the more simple direct dynamical approach of Langevin which we use and extend here, has been virtually ignored as far as the Brownian motion in a potential is concerned. In addition two other considerations have driven us to write this new edition of The Langevin Equation. First, more than five years have elapsed since the publication of the third edition and following many suggestions and comments of our colleagues and other interested readers, it became increasingly evident to us that the book should be revised in order to give a better presentation of the contents. In particular, several chapters appearing in the third edition have been rewritten so as to provide a more direct appeal to the particular community involved and at the same time to emphasize via a synergetic approach how seemingly unrelated physical problems all involving random noise may be described using virtually identical mathematical methods. Secondly, in that period many new and exciting developments have occurred in the application of the Langevin equation to Brownian motion. Consequently, in order to accommodate all these, a very large amount of new material has been added so as to present a comprehensive overview of the subject.