Author: UDAY SINGH RAJPUT
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345894
Category : Mathematics
Languages : en
Pages : 400
Book Description
Written in an accessible style, this text provides a complete coverage of discrete mathematics and its applications at an appropriate level of rigour. The book discusses algebraic structures, mathematical logic, lattices, Boolean algebra, graph theory, automata theory, grammars and recurrence relations. It covers the important topics such as coding theory, Dijkstra’s shortest path algorithm, reverse polish notation, Warshall’s algorithm, Menger’s theorem, Turing machine, and LR(k) parsers, which form a part of the fundamental applications of discrete mathematics in computer science. In addition, Pigeonhole principle, ring homomorphism, field and integral domain, trees, network flows, languages, and recurrence relations. The text is supported with a large number of examples, worked-out problems and diagrams that help students understand the theoretical explanations. The book is intended as a text for postgraduate students of mathematics, computer science, and computer applications. In addition, it will be extremely useful for the undergraduate students of computer science and engineering.
ADVANCED DISCRETE MATHEMATICS
Author: UDAY SINGH RAJPUT
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345894
Category : Mathematics
Languages : en
Pages : 400
Book Description
Written in an accessible style, this text provides a complete coverage of discrete mathematics and its applications at an appropriate level of rigour. The book discusses algebraic structures, mathematical logic, lattices, Boolean algebra, graph theory, automata theory, grammars and recurrence relations. It covers the important topics such as coding theory, Dijkstra’s shortest path algorithm, reverse polish notation, Warshall’s algorithm, Menger’s theorem, Turing machine, and LR(k) parsers, which form a part of the fundamental applications of discrete mathematics in computer science. In addition, Pigeonhole principle, ring homomorphism, field and integral domain, trees, network flows, languages, and recurrence relations. The text is supported with a large number of examples, worked-out problems and diagrams that help students understand the theoretical explanations. The book is intended as a text for postgraduate students of mathematics, computer science, and computer applications. In addition, it will be extremely useful for the undergraduate students of computer science and engineering.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120345894
Category : Mathematics
Languages : en
Pages : 400
Book Description
Written in an accessible style, this text provides a complete coverage of discrete mathematics and its applications at an appropriate level of rigour. The book discusses algebraic structures, mathematical logic, lattices, Boolean algebra, graph theory, automata theory, grammars and recurrence relations. It covers the important topics such as coding theory, Dijkstra’s shortest path algorithm, reverse polish notation, Warshall’s algorithm, Menger’s theorem, Turing machine, and LR(k) parsers, which form a part of the fundamental applications of discrete mathematics in computer science. In addition, Pigeonhole principle, ring homomorphism, field and integral domain, trees, network flows, languages, and recurrence relations. The text is supported with a large number of examples, worked-out problems and diagrams that help students understand the theoretical explanations. The book is intended as a text for postgraduate students of mathematics, computer science, and computer applications. In addition, it will be extremely useful for the undergraduate students of computer science and engineering.
Discrete Mathematics
Author: Martin Aigner
Publisher: American Mathematical Society
ISBN: 1470470632
Category : Mathematics
Languages : en
Pages : 402
Book Description
The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints and solutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition… This book is a well-written introduction to discrete mathematics and is highly recommended to every student of mathematics and computer science as well as to teachers of these topics. —Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of the MAA for expository writing, and his book Proofs from the BOOK with Günter M. Ziegler has been an international success with translations into 12 languages.
Publisher: American Mathematical Society
ISBN: 1470470632
Category : Mathematics
Languages : en
Pages : 402
Book Description
The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints and solutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition… This book is a well-written introduction to discrete mathematics and is highly recommended to every student of mathematics and computer science as well as to teachers of these topics. —Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of the MAA for expository writing, and his book Proofs from the BOOK with Günter M. Ziegler has been an international success with translations into 12 languages.
Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Discrete Mathematical Structures for Computer Science
Author: Bernard Kolman
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 488
Book Description
This text has been designed as a complete introduction to discrete mathematics, primarily for computer science majors in either a one or two semester course. The topics addressed are of genuine use in computer science, and are presented in a logically coherent fashion. The material has been organized and interrelated to minimize the mass of definitions and the abstraction of some of the theory. For example, relations and directed graphs are treated as two aspects of the same mathematical idea. Whenever possible each new idea uses previously encountered material, and then developed in such a way that it simplifies the more complex ideas that follow.
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 488
Book Description
This text has been designed as a complete introduction to discrete mathematics, primarily for computer science majors in either a one or two semester course. The topics addressed are of genuine use in computer science, and are presented in a logically coherent fashion. The material has been organized and interrelated to minimize the mass of definitions and the abstraction of some of the theory. For example, relations and directed graphs are treated as two aspects of the same mathematical idea. Whenever possible each new idea uses previously encountered material, and then developed in such a way that it simplifies the more complex ideas that follow.
Discrete Mathematics in Statistical Physics
Author: Martin Loebl
Publisher: Springer Science & Business Media
ISBN: 3834893293
Category : Science
Languages : en
Pages : 187
Book Description
The book first describes connections between some basic problems and technics of combinatorics and statistical physics. The discrete mathematics and physics terminology are related to each other. Using the established connections, some exciting activities in one field are shown from a perspective of the other field. The purpose of the book is to emphasize these interactions as a strong and successful tool. In fact, this attitude has been a strong trend in both research communities recently. It also naturally leads to many open problems, some of which seem to be basic. Hopefully, this book will help making these exciting problems attractive to advanced students and researchers.
Publisher: Springer Science & Business Media
ISBN: 3834893293
Category : Science
Languages : en
Pages : 187
Book Description
The book first describes connections between some basic problems and technics of combinatorics and statistical physics. The discrete mathematics and physics terminology are related to each other. Using the established connections, some exciting activities in one field are shown from a perspective of the other field. The purpose of the book is to emphasize these interactions as a strong and successful tool. In fact, this attitude has been a strong trend in both research communities recently. It also naturally leads to many open problems, some of which seem to be basic. Hopefully, this book will help making these exciting problems attractive to advanced students and researchers.
A Discrete Transition to Advanced Mathematics
Author: Bettina Richmond
Publisher: American Mathematical Soc.
ISBN: 0821847899
Category : Mathematics
Languages : en
Pages : 434
Book Description
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.
Publisher: American Mathematical Soc.
ISBN: 0821847899
Category : Mathematics
Languages : en
Pages : 434
Book Description
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.
Advanced Number Theory with Applications
Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1420083295
Category : Computers
Languages : en
Pages : 482
Book Description
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Publisher: CRC Press
ISBN: 1420083295
Category : Computers
Languages : en
Pages : 482
Book Description
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Discrete Mathematics
Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 1441980474
Category : Mathematics
Languages : en
Pages : 473
Book Description
This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
Publisher: Springer Science & Business Media
ISBN: 1441980474
Category : Mathematics
Languages : en
Pages : 473
Book Description
This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
Computational Discrete Mathematics
Author: Sriram Pemmaraju
Publisher: Cambridge University Press
ISBN: 1107268710
Category : Computers
Languages : en
Pages : 615
Book Description
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Publisher: Cambridge University Press
ISBN: 1107268710
Category : Computers
Languages : en
Pages : 615
Book Description
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Discrete Mathematics
Author: Olympia Nicodemi
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 514
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 514
Book Description