Advanced Data Mining Technologies in Bioinformatics

Advanced Data Mining Technologies in Bioinformatics PDF Author: Hui-Huang Hsu
Publisher: IGI Global
ISBN: 1591408636
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
"This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.

Advanced Data Mining Technologies in Bioinformatics

Advanced Data Mining Technologies in Bioinformatics PDF Author: Hui-Huang Hsu
Publisher: IGI Global
ISBN: 1591408636
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
"This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.

Data Mining in Bioinformatics

Data Mining in Bioinformatics PDF Author: Jason T. L. Wang
Publisher: Springer Science & Business Media
ISBN: 1846280591
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.

Data Mining for Bioinformatics

Data Mining for Bioinformatics PDF Author: Sumeet Dua
Publisher: CRC Press
ISBN: 0849328012
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections: Supplies a complete overview of the evolution of the field and its intersection with computational learning Describes the role of data mining in analyzing large biological databases—explaining the breath of the various feature selection and feature extraction techniques that data mining has to offer Focuses on concepts of unsupervised learning using clustering techniques and its application to large biological data Covers supervised learning using classification techniques most commonly used in bioinformatics—addressing the need for validation and benchmarking of inferences derived using either clustering or classification The book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biological databases, it considers systems of both single and ensemble classifiers and shares effort-saving tips for model selection and performance estimation strategies.

Data Mining

Data Mining PDF Author: Sushmita Mitra
Publisher: John Wiley & Sons
ISBN: 0471474886
Category : Computers
Languages : en
Pages : 423

Get Book Here

Book Description
First title to ever present soft computing approaches and their application in data mining, along with the traditional hard-computing approaches Addresses the principles of multimedia data compression techniques (for image, video, text) and their role in data mining Discusses principles and classical algorithms on string matching and their role in data mining

Advanced Data Mining Tools and Methods for Social Computing

Advanced Data Mining Tools and Methods for Social Computing PDF Author: Sourav De
Publisher: Academic Press
ISBN: 0323857094
Category : Computers
Languages : en
Pages : 294

Get Book Here

Book Description
Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis. - Provides insights into the latest research trends in social network analysis - Covers a broad range of data mining tools and methods for social computing and analysis - Includes practical examples and case studies across a range of tools and methods - Features coding examples and supplementary data sets in every chapter

Data Analytics in Bioinformatics

Data Analytics in Bioinformatics PDF Author: Rabinarayan Satpathy
Publisher: John Wiley & Sons
ISBN: 111978560X
Category : Computers
Languages : en
Pages : 439

Get Book Here

Book Description
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Advanced AI Techniques and Applications in Bioinformatics

Advanced AI Techniques and Applications in Bioinformatics PDF Author: Loveleen Gaur
Publisher: CRC Press
ISBN: 100046301X
Category : Technology & Engineering
Languages : en
Pages : 223

Get Book Here

Book Description
The advanced AI techniques are essential for resolving various problematic aspects emerging in the field of bioinformatics. This book covers the recent approaches in artificial intelligence and machine learning methods and their applications in Genome and Gene editing, cancer drug discovery classification, and the protein folding algorithms among others. Deep learning, which is widely used in image processing, is also applicable in bioinformatics as one of the most popular artificial intelligence approaches. The wide range of applications discussed in this book are an indispensable resource for computer scientists, engineers, biologists, mathematicians, physicians, and medical informaticists. Features: Focusses on the cross-disciplinary relation between computer science and biology and the role of machine learning methods in resolving complex problems in bioinformatics Provides a comprehensive and balanced blend of topics and applications using various advanced algorithms Presents cutting-edge research methodologies in the area of AI methods when applied to bioinformatics and innovative solutions Discusses the AI/ML techniques, their use, and their potential for use in common and future bioinformatics applications Includes recent achievements in AI and bioinformatics contributed by a global team of researchers

Data Mining with Computational Intelligence

Data Mining with Computational Intelligence PDF Author: Lipo Wang
Publisher: Springer Science & Business Media
ISBN: 3540288031
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, banking, retail, and many others. Wang and Fu present in detail the state of the art on how to utilize fuzzy neural networks, multilayer perceptron neural networks, radial basis function neural networks, genetic algorithms, and support vector machines in such applications. They focus on three main data mining tasks: data dimensionality reduction, classification, and rule extraction. The book is targeted at researchers in both academia and industry, while graduate students and developers of data mining systems will also profit from the detailed algorithmic descriptions.

Biomedical Data Mining for Information Retrieval

Biomedical Data Mining for Information Retrieval PDF Author: Sujata Dash
Publisher: John Wiley & Sons
ISBN: 111971124X
Category : Computers
Languages : en
Pages : 450

Get Book Here

Book Description
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Bioinformatics

Bioinformatics PDF Author: Christine Orengo
Publisher: Taylor & Francis
ISBN: 1135325235
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
Bioinformatics, the use of computers to address biological questions, has become an essential tool in biological research. It is one of the critical keys needed to unlock the information encoded in the flood of data generated by genome, protein structure, transcriptome and proteome research. Bioinformatics: Genes, Proteins & Computers covers both the more traditional approaches to bioinformatics, including gene and protein sequence analysis and structure prediction, and more recent technologies such as datamining of transcriptomic and proteomic data to provide insights on cellular mechanisms and the causes of disease.