Data Science and Big Data Computing

Data Science and Big Data Computing PDF Author: Zaigham Mahmood
Publisher: Springer
ISBN: 3319318616
Category : Business & Economics
Languages : en
Pages : 332

Get Book Here

Book Description
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

Data Science and Big Data Computing

Data Science and Big Data Computing PDF Author: Zaigham Mahmood
Publisher: Springer
ISBN: 3319318616
Category : Business & Economics
Languages : en
Pages : 332

Get Book Here

Book Description
This illuminating text/reference surveys the state of the art in data science, and provides practical guidance on big data analytics. Expert perspectives are provided by authoritative researchers and practitioners from around the world, discussing research developments and emerging trends, presenting case studies on helpful frameworks and innovative methodologies, and suggesting best practices for efficient and effective data analytics. Features: reviews a framework for fast data applications, a technique for complex event processing, and agglomerative approaches for the partitioning of networks; introduces a unified approach to data modeling and management, and a distributed computing perspective on interfacing physical and cyber worlds; presents techniques for machine learning for big data, and identifying duplicate records in data repositories; examines enabling technologies and tools for data mining; proposes frameworks for data extraction, and adaptive decision making and social media analysis.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Data Science Quick Reference Manual - Advanced Machine Learning and Deployment

Data Science Quick Reference Manual - Advanced Machine Learning and Deployment PDF Author: Mario A. B. Capurso
Publisher: Mario Capurso
ISBN:
Category : Computers
Languages : en
Pages : 278

Get Book Here

Book Description
This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Part in a series of texts, it first summarizes the standard CRISP DM working methodology used in this work and in Data Science projects. As this text uses Orange for the application aspects, it describes its installation and widgets. The data modeling phase is considered from the perspective of machine learning by summarizing machine learning types, model types, problem types, and algorithm types. Advanced aspects associated with modeling are described such as loss and optimization functions such as gradient descent, techniques to analyze model performance such as Bootstrapping and Cross Validation. Deployment scenarios and the most common platforms are analyzed, with application examples. Mechanisms are proposed to automate machine learning and to support the interpretability of models and results such as Partial Dependence Plot, Permuted Feature Importance and others. The exercises are described with Orange and Python using the Keras/Tensorflow library. The text is accompanied by supporting material and it is possible to download the examples and the test data.

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry

Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry PDF Author: Chkoniya, Valentina
Publisher: IGI Global
ISBN: 1799869865
Category : Computers
Languages : en
Pages : 653

Get Book Here

Book Description
The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.

Advanced Deep Learning Applications in Big Data Analytics

Advanced Deep Learning Applications in Big Data Analytics PDF Author: Bouarara, Hadj Ahmed
Publisher: IGI Global
ISBN: 1799827933
Category : Computers
Languages : en
Pages : 351

Get Book Here

Book Description
Interest in big data has swelled within the scholarly community as has increased attention to the internet of things (IoT). Algorithms are constructed in order to parse and analyze all this data to facilitate the exchange of information. However, big data has suffered from problems in connectivity, scalability, and privacy since its birth. The application of deep learning algorithms has helped process those challenges and remains a major issue in today’s digital world. Advanced Deep Learning Applications in Big Data Analytics is a pivotal reference source that aims to develop new architecture and applications of deep learning algorithms in big data and the IoT. Highlighting a wide range of topics such as artificial intelligence, cloud computing, and neural networks, this book is ideally designed for engineers, data analysts, data scientists, IT specialists, programmers, marketers, entrepreneurs, researchers, academicians, and students.

Introduction to Algorithms for Data Mining and Machine Learning

Introduction to Algorithms for Data Mining and Machine Learning PDF Author: Xin-She Yang
Publisher: Academic Press
ISBN: 0128172177
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages

Big Data Analytics

Big Data Analytics PDF Author: Arun K. Somani
Publisher: CRC Press
ISBN: 1351180320
Category : Computers
Languages : en
Pages : 399

Get Book Here

Book Description
The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers.

Deep Learning Applications, Volume 2

Deep Learning Applications, Volume 2 PDF Author: M. Arif Wani
Publisher: Springer
ISBN: 9789811567582
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Advanced Machine Learning using Python Programming

Advanced Machine Learning using Python Programming PDF Author: SOHARA BANU A R
Publisher: MileStone Research Publications
ISBN: 9359149780
Category : Computers
Languages : en
Pages : 101

Get Book Here

Book Description
THE AUTHOR(S) AND PUBLISHER OF THIS BOOK HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK. THESE EFFORTS INCLUDE THE DEVELOPMENT, RESEARCH ANDTESTING OF THE THEORIES AND PROGRAMS TO DETERMINE THEIR EFFECTIVENESS. THE AUTHORS AND PUBLISHER MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIEDWITH REGARD TO THESE PROGRAMS OR THE DOCUMENTATION CONTAINED IN THIS BOOK. THE AUTHORS AND PUBLISHER SHALL NOT BE LIABLE IN ANY EVENT FORINCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH, OR ARISING OUT OF, THE FURNISHING, PERFORMANCE, OR USE OF THESE PROGRAMS. COPYRIGHTS © 2023 BY MILESTONE RESEARCH PUBLICATIONS, INC. THIS EDITION IS PUBLISHED BY ARRANGEMENT WITH MILESTONE RESEARCH FOUNDATION, INC. THIS BOOK IS SOLD SUBJECT TO THE CONDITION THAT IT SHALL NOT, BY WAY OF TRADE OR OTHERWISE, BE LENT, RESOLD, HIRED OUT, OR OTHERWISE CIRCULATED WITHOUTTHE PUBLISHER'S PRIOR WRITTEN CONSENT IN ANY FORM OF BINDING OR COVER OTHER THAN THAT IN WHICH IT IS PUBLISHED AND WITHOUT A SIMILAR CONDITIONINCLUDING THIS CONDITION BEING IMPOSED ON THE SUBSEQUENT PURCHASER AND WITHOUT LIMITING THE RIGHTS UNDER COPYRIGHT RESERVED ABOVE, NO PART OF THISPUBLICATION MAY BE REPRODUCED, STORED IN OR INTRODUCED INTO RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS (ELECTRONIC, MECHANICAL,PHOTOCOPYING, RECORDING AND OTHERWISE) WITHOUT THE PRIOR WRITTEN PERMISSION OF BOTH THE COPYRIGHT OWNER AND THE ABOVE MENTIONED PUBLISHER OFTHIS BOOK.

Data Science and Big Data Analytics

Data Science and Big Data Analytics PDF Author: EMC Education Services
Publisher: John Wiley & Sons
ISBN: 1118876059
Category : Computers
Languages : en
Pages : 432

Get Book Here

Book Description
Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!