Author: Arthur J. Nozik
Publisher: Royal Society of Chemistry
ISBN: 1849739951
Category : Science
Languages : en
Pages : 631
Book Description
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.
Advanced Concepts in Photovoltaics
Author: Arthur J. Nozik
Publisher: Royal Society of Chemistry
ISBN: 1849739951
Category : Science
Languages : en
Pages : 631
Book Description
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.
Publisher: Royal Society of Chemistry
ISBN: 1849739951
Category : Science
Languages : en
Pages : 631
Book Description
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.
Perovskite Photovoltaics
Author: Aparna Thankappan
Publisher: Academic Press
ISBN: 0128129166
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Publisher: Academic Press
ISBN: 0128129166
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Physics of Solar Cells
Author: Peter Würfel
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288
Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288
Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.
Next Generation of Photovoltaics
Author: Ana Cristobal
Publisher: Springer Science & Business Media
ISBN: 3642233686
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.
Publisher: Springer Science & Business Media
ISBN: 3642233686
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.
Third Generation Photovoltaics
Author: Martin A. Green
Publisher: Springer Science & Business Media
ISBN: 3540265635
Category : Science
Languages : en
Pages : 163
Book Description
Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.
Publisher: Springer Science & Business Media
ISBN: 3540265635
Category : Science
Languages : en
Pages : 163
Book Description
Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.
Advanced Micro- and Nanomaterials for Photovoltaics
Author:
Publisher: Elsevier
ISBN: 0128145021
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
Nanomaterials are becoming increasingly important photovoltaic technologies from absorbers to contacts. This book is dedicated to describing the novel materials and technologies for photovoltaics that derive from these new and novel approaches in solar technologies. We have collected a set of renowned experts in their respective fields as authors and their expertise covers a broad set of areas including novel oxides, quantum dots, CZTS and organic solar cells, as well as light management and reliability testing. The organization of the book is divided into three sections; the first part deals with emerging photovoltaic absorbers and absorber approaches, the second part is focused on novel solar cell architectures and device concepts and components; and the last part is focused on their integration into module technologies. The first chapter is an introduction to the basics of solar cells technology facilitating an understanding by the non-expert of the following chapters. The book is intended for academics and professionals, at the research and R&D level in materials and devices, who are looking for opportunities for applications in the solar materials, devices and modules areas. Hopefully it will serve as a reference for students and professionals looking into the potential and development of novel photovoltaic technologies, researchers looking into the development of innovative projects, and teachers in the field of energy and sustainability. - Showcases a range of cutting-edge photovoltaic materials and devices, exploring their special properties and how they are best used - Assesses the challenges of fabricating solar cell devices using nanotechnology - Explores how producing cheaper modules, increasing reliability and increasing efficiency have led to new applications for photovoltaic devices
Publisher: Elsevier
ISBN: 0128145021
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
Nanomaterials are becoming increasingly important photovoltaic technologies from absorbers to contacts. This book is dedicated to describing the novel materials and technologies for photovoltaics that derive from these new and novel approaches in solar technologies. We have collected a set of renowned experts in their respective fields as authors and their expertise covers a broad set of areas including novel oxides, quantum dots, CZTS and organic solar cells, as well as light management and reliability testing. The organization of the book is divided into three sections; the first part deals with emerging photovoltaic absorbers and absorber approaches, the second part is focused on novel solar cell architectures and device concepts and components; and the last part is focused on their integration into module technologies. The first chapter is an introduction to the basics of solar cells technology facilitating an understanding by the non-expert of the following chapters. The book is intended for academics and professionals, at the research and R&D level in materials and devices, who are looking for opportunities for applications in the solar materials, devices and modules areas. Hopefully it will serve as a reference for students and professionals looking into the potential and development of novel photovoltaic technologies, researchers looking into the development of innovative projects, and teachers in the field of energy and sustainability. - Showcases a range of cutting-edge photovoltaic materials and devices, exploring their special properties and how they are best used - Assesses the challenges of fabricating solar cell devices using nanotechnology - Explores how producing cheaper modules, increasing reliability and increasing efficiency have led to new applications for photovoltaic devices
Advanced Solar Cell Materials, Technology, Modeling, and Simulation
Author: Fara, Laurentiu
Publisher: IGI Global
ISBN: 1466619287
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
While measuring the effectiveness of solar cell materials may not always be practical once a device has been created, solar cell modeling may allow researchers to obtain prospective analyses of the internal processes of potential materials prior to their manufacture. Advanced Solar Cell Materials, Technology, Modeling, and Simulation discusses the development and use of modern solar cells made from composite materials. This volume is targeted toward experts from universities and research organizations, as well as young professionals interested in pursuing different subjects regarding advanced solar cells.
Publisher: IGI Global
ISBN: 1466619287
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
While measuring the effectiveness of solar cell materials may not always be practical once a device has been created, solar cell modeling may allow researchers to obtain prospective analyses of the internal processes of potential materials prior to their manufacture. Advanced Solar Cell Materials, Technology, Modeling, and Simulation discusses the development and use of modern solar cells made from composite materials. This volume is targeted toward experts from universities and research organizations, as well as young professionals interested in pursuing different subjects regarding advanced solar cells.
The Physics Of Solar Cells
Author: Jenny A Nelson
Publisher: World Scientific Publishing Company
ISBN: 1848168233
Category : Science
Languages : en
Pages : 387
Book Description
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Publisher: World Scientific Publishing Company
ISBN: 1848168233
Category : Science
Languages : en
Pages : 387
Book Description
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Micro- and Nanophotonic Technologies
Author: Patrick Meyrueis
Publisher: John Wiley & Sons
ISBN: 3527699937
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D. As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.
Publisher: John Wiley & Sons
ISBN: 3527699937
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D. As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.
Perovskite Photovoltaics and Optoelectronics
Author: Tsutomu Miyasaka
Publisher: John Wiley & Sons
ISBN: 3527347488
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.
Publisher: John Wiley & Sons
ISBN: 3527347488
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
Perovskite Photovoltaics and Optoelectronics Discover a one-of-a-kind treatment of perovskite photovoltaics In less than a decade, the photovoltaics of organic-inorganic halide perovskite materials has surpassed the efficiency of semiconductor compounds like CdTe and CIGS in solar cells. In Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications, distinguished engineer Dr. Tsutomu Miyasaka delivers a comprehensive exploration of foundational and advanced topics regarding halide perovskites. It summarizes the latest information and discussion in the field, from fundamental theory and materials to critical device applications. With contributions by top scientists working in the perovskite community, the accomplished editor has compiled a resource of central importance for researchers working on perovskite related materials and devices. This edited volume includes coverage of new materials and their commercial and market potential in areas like perovskite solar cells, perovskite light-emitting diodes (LEDs), and perovskite-based photodetectors. It also includes: A thorough introduction to halide perovskite materials, their synthesis, and dimension control Comprehensive explorations of the photovoltaics of halide perovskites and their historical background Practical discussions of solid-state photophysics and carrier transfer mechanisms in halide perovskite semiconductors In-depth examinations of multi-cation anion-based high efficiency perovskite solar cells Perfect for materials scientists, crystallization physicists, surface chemists, and solid-state physicists, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications is also an indispensable resource for solid state chemists and device/electronics engineers.