Advanced Computational Methods in Science and Engineering

Advanced Computational Methods in Science and Engineering PDF Author: Barry Koren
Publisher: Springer Science & Business Media
ISBN: 364203344X
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.

Advanced Computational Methods in Science and Engineering

Advanced Computational Methods in Science and Engineering PDF Author: Barry Koren
Publisher: Springer Science & Business Media
ISBN: 364203344X
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.

Advanced Computational Methods in Mechanical and Materials Engineering

Advanced Computational Methods in Mechanical and Materials Engineering PDF Author: Ashwani Kumar
Publisher: CRC Press
ISBN: 1000483029
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
This book provides in-depth knowledge to solve engineering, geometrical, mathematical, and scientific problems with the help of advanced computational methods with a focus on mechanical and materials engineering. Divided into three subsections covering design and fluids, thermal engineering and materials engineering, each chapter includes exhaustive literature review along with thorough analysis and future research scope. Major topics covered pertains to computational fluid dynamics, mechanical performance, design, and fabrication including wide range of applications in industries as automotive, aviation, electronics, nuclear and so forth. Covers computational methods in design and fluid dynamics with a focus on computational fluid dynamics Explains advanced material applications and manufacturing in labs using novel alloys and introduces properties in material Discusses fabrication of graphene reinforced magnesium metal matrix for orthopedic applications Illustrates simulation and optimization gear transmission, heat sink and heat exchangers application Provides unique problem-solution approach including solutions, methodology, experimental setup, and results validation This book is aimed at researchers, graduate students in mechanical engineering, computer fluid dynamics,fluid mechanics, computer modeling, machine parts, and mechatronics.

Analytical and Computational Methods of Advanced Engineering Mathematics

Analytical and Computational Methods of Advanced Engineering Mathematics PDF Author: Grant B. Gustafson
Publisher: Springer Science & Business Media
ISBN: 1461206332
Category : Technology & Engineering
Languages : en
Pages : 754

Get Book Here

Book Description
This book focuses on the topics which provide the foundation for practicing engineering mathematics: ordinary differential equations, vector calculus, linear algebra and partial differential equations. Destined to become the definitive work in the field, the book uses a practical engineering approach based upon solving equations and incorporates computational techniques throughout.

Computational Problems in Science and Engineering

Computational Problems in Science and Engineering PDF Author: Nikos Mastorakis
Publisher: Springer
ISBN: 3319157655
Category : Technology & Engineering
Languages : en
Pages : 483

Get Book Here

Book Description
This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.

Computational Methods in Chemical Engineering

Computational Methods in Chemical Engineering PDF Author: Owen T. Hanna
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
Authors Owen Hanna and Orville Sandall include broad use of convergence acceleration techniques such as Pade approximation for series; Shanks transformation for series; linear and nonlinear systems of algebraic equations; systematic use of global Richardson extrapolation for integrals and ODE systems to monitor the overall error; and discussion of methods for the solution of stiff ODE.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Methods in Computational Science

Methods in Computational Science PDF Author: Johan Hoffman
Publisher: SIAM
ISBN: 1611976723
Category : Computers
Languages : en
Pages : 425

Get Book Here

Book Description
Computational methods are an integral part of most scientific disciplines, and a rudimentary understanding of their potential and limitations is essential for any scientist or engineer. This textbook introduces computational science through a set of methods and algorithms, with the aim of familiarizing the reader with the field’s theoretical foundations and providing the practical skills to use and develop computational methods. Centered around a set of fundamental algorithms presented in the form of pseudocode, this self-contained textbook extends the classical syllabus with new material, including high performance computing, adjoint methods, machine learning, randomized algorithms, and quantum computing. It presents theoretical material alongside several examples and exercises and provides Python implementations of many key algorithms. Methods in Computational Science is for advanced undergraduate and graduate-level students studying computer science and data science. It can also be used to support continuous learning for practicing mathematicians, data scientists, computer scientists, and engineers in the field of computational science. It is appropriate for courses in advanced numerical analysis, data science, numerical optimization, and approximation theory.

Verification of Computer Codes in Computational Science and Engineering

Verification of Computer Codes in Computational Science and Engineering PDF Author: Patrick Knupp
Publisher: CRC Press
ISBN: 1420035428
Category : Computers
Languages : en
Pages : 161

Get Book Here

Book Description
How can one be assured that computer codes that solve differential equations are correct? Standard practice using benchmark testing no longer provides full coverage because today's production codes solve more complex equations using more powerful algorithms. By verifying the order-of-accuracy of the numerical algorithm implemented in the code, one can detect most any coding mistake that would prevent correct solutions from being computed. Verification of Computer Codes in Computational Science and Engineering sets forth a powerful alternative called OVMSP: Order-Verification via the Manufactured Solution Procedure. This procedure has two primary components: using the Method of Manufactured Exact Solutions to create analytic solutions to the fully-general differential equations solved by the code and using grid convergence studies to confirm the order-of-accuracy. The authors present a step-by-step procedural guide to OVMSP implementation and demonstrate its effectiveness. Properly implemented, OVMSP offers an exciting opportunity to identify virtually all coding 'bugs' that prevent correct solution of the governing partial differential equations. Verification of Computer Codes in Computational Science and Engineering shows you how this can be done. The treatment is clear, concise, and suitable both for developers of production quality simulation software and as a reference for computational science and engineering professionals.

Parallel Algorithms in Computational Science and Engineering

Parallel Algorithms in Computational Science and Engineering PDF Author: Ananth Grama
Publisher: Springer Nature
ISBN: 3030437361
Category : Computers
Languages : en
Pages : 421

Get Book Here

Book Description
This contributed volume highlights two areas of fundamental interest in high-performance computing: core algorithms for important kernels and computationally demanding applications. The first few chapters explore algorithms, numerical techniques, and their parallel formulations for a variety of kernels that arise in applications. The rest of the volume focuses on state-of-the-art applications from diverse domains. By structuring the volume around these two areas, it presents a comprehensive view of the application landscape for high-performance computing, while also enabling readers to develop new applications using the kernels. Readers will learn how to choose the most suitable parallel algorithms for any given application, ensuring that theory and practicality are clearly connected. Applications using these techniques are illustrated in detail, including: Computational materials science and engineering Computational cardiovascular analysis Multiscale analysis of wind turbines and turbomachinery Weather forecasting Machine learning techniques Parallel Algorithms in Computational Science and Engineering will be an ideal reference for applied mathematicians, engineers, computer scientists, and other researchers who utilize high-performance computing in their work.

Learning to Communicate in Science and Engineering

Learning to Communicate in Science and Engineering PDF Author: Mya Poe
Publisher: MIT Press
ISBN: 0262162474
Category : Science
Languages : en
Pages : 269

Get Book Here

Book Description
Case studies and pedagogical strategies to help science and engineering students improve their writing and speaking skills while developing professional identities. To many science and engineering students, the task of writing may seem irrelevant to their future professional careers. At MIT, however, students discover that writing about their technical work is important not only in solving real-world problems but also in developing their professional identities. MIT puts into practice the belief that “engineers who don’t write well end up working for engineers who do write well,” requiring all students to take “communications-intensive” classes in which they learn from MIT faculty and writing instructors how to express their ideas in writing and in presentations. Students are challenged not only to think like professional scientists and engineers but also to communicate like them. This book offers in-depth case studies and pedagogical strategies from a range of science and engineering communication-intensive classes at MIT. It traces the progress of seventeen students from diverse backgrounds in seven classes that span five departments. Undergraduates in biology attempt to turn scientific findings into a research article; graduate students learn to define their research for scientific grant writing; undergraduates in biomedical engineering learn to use data as evidence; and students in aeronautic and astronautic engineering learn to communicate collaboratively. Each case study is introduced by a description of its theoretical and curricular context and an outline of the objectives for the students’ activities. The studies describe the on-the-ground realities of working with faculty, staff, and students to achieve communication and course goals, offering lessons that can be easily applied to a wide variety of settings and institutions.