Author: Michael R. Kosorok
Publisher: SIAM
ISBN: 1611974186
Category : Medical
Languages : en
Pages : 348
Book Description
Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine. The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.
Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine
Author: Michael R. Kosorok
Publisher: SIAM
ISBN: 1611974186
Category : Medical
Languages : en
Pages : 348
Book Description
Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine. The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.
Publisher: SIAM
ISBN: 1611974186
Category : Medical
Languages : en
Pages : 348
Book Description
Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine. The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.
Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine
Author: Michael R. Kosorok
Publisher: SIAM
ISBN: 1611974178
Category : Medical
Languages : en
Pages : 354
Book Description
Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine.? The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.?
Publisher: SIAM
ISBN: 1611974178
Category : Medical
Languages : en
Pages : 354
Book Description
Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine.? The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.?
Textbook of Clinical Trials in Oncology
Author: Susan Halabi
Publisher: CRC Press
ISBN: 1351620967
Category : Medical
Languages : en
Pages : 708
Book Description
There is an increasing need for educational resources for statisticians and investigators. Reflecting this, the goal of this book is to provide readers with a sound foundation in the statistical design, conduct, and analysis of clinical trials. Furthermore, it is intended as a guide for statisticians and investigators with minimal clinical trial experience who are interested in pursuing a career in this area. The advancement in genetic and molecular technologies have revolutionized drug development. In recent years, clinical trials have become increasingly sophisticated as they incorporate genomic studies, and efficient designs (such as basket and umbrella trials) have permeated the field. This book offers the requisite background and expert guidance for the innovative statistical design and analysis of clinical trials in oncology. Key Features: Cutting-edge topics with appropriate technical background Built around case studies which give the work a "hands-on" approach Real examples of flaws in previously reported clinical trials and how to avoid them Access to statistical code on the book’s website Chapters written by internationally recognized statisticians from academia and pharmaceutical companies Carefully edited to ensure consistency in style, level, and approach Topics covered include innovating phase I and II designs, trials in immune-oncology and rare diseases, among many others
Publisher: CRC Press
ISBN: 1351620967
Category : Medical
Languages : en
Pages : 708
Book Description
There is an increasing need for educational resources for statisticians and investigators. Reflecting this, the goal of this book is to provide readers with a sound foundation in the statistical design, conduct, and analysis of clinical trials. Furthermore, it is intended as a guide for statisticians and investigators with minimal clinical trial experience who are interested in pursuing a career in this area. The advancement in genetic and molecular technologies have revolutionized drug development. In recent years, clinical trials have become increasingly sophisticated as they incorporate genomic studies, and efficient designs (such as basket and umbrella trials) have permeated the field. This book offers the requisite background and expert guidance for the innovative statistical design and analysis of clinical trials in oncology. Key Features: Cutting-edge topics with appropriate technical background Built around case studies which give the work a "hands-on" approach Real examples of flaws in previously reported clinical trials and how to avoid them Access to statistical code on the book’s website Chapters written by internationally recognized statisticians from academia and pharmaceutical companies Carefully edited to ensure consistency in style, level, and approach Topics covered include innovating phase I and II designs, trials in immune-oncology and rare diseases, among many others
Principles and Practice of Clinical Trials
Author: Steven Piantadosi
Publisher: Springer Nature
ISBN: 3319526367
Category : Medical
Languages : en
Pages : 2573
Book Description
This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.
Publisher: Springer Nature
ISBN: 3319526367
Category : Medical
Languages : en
Pages : 2573
Book Description
This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.
The Elements of Joint Learning and Optimization in Operations Management
Author: Xi Chen
Publisher: Springer Nature
ISBN: 3031019261
Category : Business & Economics
Languages : en
Pages : 444
Book Description
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.
Publisher: Springer Nature
ISBN: 3031019261
Category : Business & Economics
Languages : en
Pages : 444
Book Description
This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.
Statistics in Precision Health
Author: Yichuan Zhao
Publisher: Springer Nature
ISBN: 3031506901
Category :
Languages : en
Pages : 545
Book Description
Publisher: Springer Nature
ISBN: 3031506901
Category :
Languages : en
Pages : 545
Book Description
Handbook of Statistical Methods for Randomized Controlled Trials
Author: KyungMann Kim
Publisher: CRC Press
ISBN: 1498714641
Category : Mathematics
Languages : en
Pages : 655
Book Description
Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials. Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.
Publisher: CRC Press
ISBN: 1498714641
Category : Mathematics
Languages : en
Pages : 655
Book Description
Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials. Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.
Machine and Deep Learning in Oncology, Medical Physics and Radiology
Author: Issam El Naqa
Publisher: Springer Nature
ISBN: 3030830470
Category : Science
Languages : en
Pages : 514
Book Description
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
Publisher: Springer Nature
ISBN: 3030830470
Category : Science
Languages : en
Pages : 514
Book Description
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
Artificial Intelligence for Healthcare
Author: Sze-chuan Suen
Publisher: Cambridge University Press
ISBN: 1108871801
Category : Computers
Languages : en
Pages : 204
Book Description
Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle societal and operational problems in healthcare. The topics are drawn from a wide variety of disciplines, ranging from optimizing the location of AEDs for cardiac arrests to data mining for facilitating patient flow through a hospital. These applications highlight how engineering has contributed to medical knowledge, health system operations, and behavioral health. Chapter authors include medical doctors, policy-makers, social scientists, and engineers. Each chapter begins with a summary of the health care problem and engineering method. In these examples, researchers in public health, medicine, and social science as well as engineers will find a path to start interdisciplinary collaborations in health applications of AI/IE/OR.
Publisher: Cambridge University Press
ISBN: 1108871801
Category : Computers
Languages : en
Pages : 204
Book Description
Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle societal and operational problems in healthcare. The topics are drawn from a wide variety of disciplines, ranging from optimizing the location of AEDs for cardiac arrests to data mining for facilitating patient flow through a hospital. These applications highlight how engineering has contributed to medical knowledge, health system operations, and behavioral health. Chapter authors include medical doctors, policy-makers, social scientists, and engineers. Each chapter begins with a summary of the health care problem and engineering method. In these examples, researchers in public health, medicine, and social science as well as engineers will find a path to start interdisciplinary collaborations in health applications of AI/IE/OR.
Cancer Clinical Trials
Author: Stephen L. George
Publisher: CRC Press
ISBN: 1315354330
Category : Mathematics
Languages : en
Pages : 374
Book Description
Cancer Clinical Trials: Current and Controversial Issues in Design and Analysis provides statisticians with an understanding of the critical challenges currently encountered in oncology trials. Well-known statisticians from academic institutions, regulatory and government agencies (such as the U.S. FDA and National Cancer Institute), and the pharmaceutical industry share their extensive experiences in cancer clinical trials and present examples taken from actual trials. The book covers topics that are often perplexing and sometimes controversial in cancer clinical trials. Most of the issues addressed are also important for clinical trials in other settings. After discussing general topics, the book focuses on aspects of early and late phase clinical trials. It also explores personalized medicine, including biomarker-based clinical trials, adaptive clinical trial designs, and dynamic treatment regimes.
Publisher: CRC Press
ISBN: 1315354330
Category : Mathematics
Languages : en
Pages : 374
Book Description
Cancer Clinical Trials: Current and Controversial Issues in Design and Analysis provides statisticians with an understanding of the critical challenges currently encountered in oncology trials. Well-known statisticians from academic institutions, regulatory and government agencies (such as the U.S. FDA and National Cancer Institute), and the pharmaceutical industry share their extensive experiences in cancer clinical trials and present examples taken from actual trials. The book covers topics that are often perplexing and sometimes controversial in cancer clinical trials. Most of the issues addressed are also important for clinical trials in other settings. After discussing general topics, the book focuses on aspects of early and late phase clinical trials. It also explores personalized medicine, including biomarker-based clinical trials, adaptive clinical trial designs, and dynamic treatment regimes.