Author: Spandan Roy
Publisher: Springer Nature
ISBN: 981150640X
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
The book investigates the role of artificial input delay in approximating unknown system dynamics, referred to as time-delayed control (TDC), and provides novel solutions to current design issues in TDC. Its central focus is on designing adaptive-switching gain-based robust control (ARC) for a class of Euler–Lagrange (EL) systems with minimal or no knowledge of the system dynamics parameters. The newly proposed TDC-based ARC tackles the commonly observed over- and under-estimation issues in switching gain. The consideration of EL systems lends a practical perspective on the proposed methods, and each chapter is supplemented by relevant experimental data. The book offers a unique resource for researchers in the areas of ARC and TDC alike, and covers the state of the art, new algorithms, and future directions.
Adaptive-Robust Control with Limited Knowledge on Systems Dynamics
Author: Spandan Roy
Publisher: Springer Nature
ISBN: 981150640X
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
The book investigates the role of artificial input delay in approximating unknown system dynamics, referred to as time-delayed control (TDC), and provides novel solutions to current design issues in TDC. Its central focus is on designing adaptive-switching gain-based robust control (ARC) for a class of Euler–Lagrange (EL) systems with minimal or no knowledge of the system dynamics parameters. The newly proposed TDC-based ARC tackles the commonly observed over- and under-estimation issues in switching gain. The consideration of EL systems lends a practical perspective on the proposed methods, and each chapter is supplemented by relevant experimental data. The book offers a unique resource for researchers in the areas of ARC and TDC alike, and covers the state of the art, new algorithms, and future directions.
Publisher: Springer Nature
ISBN: 981150640X
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
The book investigates the role of artificial input delay in approximating unknown system dynamics, referred to as time-delayed control (TDC), and provides novel solutions to current design issues in TDC. Its central focus is on designing adaptive-switching gain-based robust control (ARC) for a class of Euler–Lagrange (EL) systems with minimal or no knowledge of the system dynamics parameters. The newly proposed TDC-based ARC tackles the commonly observed over- and under-estimation issues in switching gain. The consideration of EL systems lends a practical perspective on the proposed methods, and each chapter is supplemented by relevant experimental data. The book offers a unique resource for researchers in the areas of ARC and TDC alike, and covers the state of the art, new algorithms, and future directions.
Control Strategy for Time-Delay Systems
Author: Mohammad-Hassan Khooban
Publisher: Academic Press
ISBN: 032385804X
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Since delays are present in 99% of industrial processes, Control Strategy for Time-delay Systems covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modelling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described in the book For this purpose, highly complex models are introduced to ?describe the mentioned new applications which are characterized by ?time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence ?of different time-scales. Researchers, practitioners and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning the practical system issues such as standardization, protection and design.
Publisher: Academic Press
ISBN: 032385804X
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Since delays are present in 99% of industrial processes, Control Strategy for Time-delay Systems covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modelling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described in the book For this purpose, highly complex models are introduced to ?describe the mentioned new applications which are characterized by ?time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence ?of different time-scales. Researchers, practitioners and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning the practical system issues such as standardization, protection and design.
Robust Adaptive Control
Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
Fundamentals of Robotics
Author: Hamid D. Taghirad
Publisher: CRC Press
ISBN: 1040264891
Category : Technology & Engineering
Languages : en
Pages : 555
Book Description
In an era where robotics is reshaping industries and redefining possibilities, "Fundamentals of Robotics: Applied Case Studies with MATLAB® & Python" emerges as an essential guide for both aspiring engineers and seasoned professionals. This comprehensive book bridges the gap between theoretical knowledge and practical application, driving advancements in robotics technology that mimic the complexity and grace of biological creatures. Explore the intricate world of serial robots, from their kinematic and dynamic foundations to advanced control systems. Discover how the precise movements of a magician's fingers or the poised posture of a king cobra inspire the mathematical principles that govern robotic motion. The book delves into the Denavit-Hartenberg method, screw theory, and the Jacobian matrix, providing a thorough understanding of robot design and analysis. Unique to this text is the integration of MATLAB® and Python, offering readers practical experience through step-by-step solutions and ready-to-use code. Each chapter is enriched with real-world case studies, including the 6-DOF Stanford robot and the Fanuc S-900w, allowing readers to apply theoretical concepts to tangible problems. The inclusion of biological examples enhances the relevance and accessibility of complex topics, illustrating the natural elegance of robotics. Key Features: Includes a diverse range of examples and exercises with accompanying MATLAB® and Python codes. Contains over 30 case studies which allows the readers to gain a thorough understanding. Aids instruction in classrooms with inclusion of teaching slides and handouts. Combines diverse topics like kinematics, dynamics, and control within a single book. Ideal for senior undergraduate and graduate students, as well as industry professionals, this book covers a wide range of topics, including linear and nonlinear control methods, trajectory planning, and force control. The dynamic models and control strategies discussed are crucial for anyone involved in the design, operation, or study of industrial robots. "Fundamentals of Robotics: Applied Case Studies with MATLAB® & Python" is more than a textbook; it is a vital resource that provides the knowledge and tools needed to succeed in the dynamic field of robotics. Join the journey towards mastering robotic technology and contribute to the future of intelligent machines.
Publisher: CRC Press
ISBN: 1040264891
Category : Technology & Engineering
Languages : en
Pages : 555
Book Description
In an era where robotics is reshaping industries and redefining possibilities, "Fundamentals of Robotics: Applied Case Studies with MATLAB® & Python" emerges as an essential guide for both aspiring engineers and seasoned professionals. This comprehensive book bridges the gap between theoretical knowledge and practical application, driving advancements in robotics technology that mimic the complexity and grace of biological creatures. Explore the intricate world of serial robots, from their kinematic and dynamic foundations to advanced control systems. Discover how the precise movements of a magician's fingers or the poised posture of a king cobra inspire the mathematical principles that govern robotic motion. The book delves into the Denavit-Hartenberg method, screw theory, and the Jacobian matrix, providing a thorough understanding of robot design and analysis. Unique to this text is the integration of MATLAB® and Python, offering readers practical experience through step-by-step solutions and ready-to-use code. Each chapter is enriched with real-world case studies, including the 6-DOF Stanford robot and the Fanuc S-900w, allowing readers to apply theoretical concepts to tangible problems. The inclusion of biological examples enhances the relevance and accessibility of complex topics, illustrating the natural elegance of robotics. Key Features: Includes a diverse range of examples and exercises with accompanying MATLAB® and Python codes. Contains over 30 case studies which allows the readers to gain a thorough understanding. Aids instruction in classrooms with inclusion of teaching slides and handouts. Combines diverse topics like kinematics, dynamics, and control within a single book. Ideal for senior undergraduate and graduate students, as well as industry professionals, this book covers a wide range of topics, including linear and nonlinear control methods, trajectory planning, and force control. The dynamic models and control strategies discussed are crucial for anyone involved in the design, operation, or study of industrial robots. "Fundamentals of Robotics: Applied Case Studies with MATLAB® & Python" is more than a textbook; it is a vital resource that provides the knowledge and tools needed to succeed in the dynamic field of robotics. Join the journey towards mastering robotic technology and contribute to the future of intelligent machines.
Robust and Adaptive Control
Author: Eugene Lavretsky
Publisher: Springer Nature
ISBN: 3031383141
Category : Adaptive control systems
Languages : en
Pages : 718
Book Description
Zusammenfassung: Robust and Adaptive Control (second edition) shows readers how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications, the focus of the book is primarily on continuous-time dynamical systems. The two-part text begins with robust and optimal linear control methods and moves on to a self-contained presentation of the design and analysis of model reference adaptive control for nonlinear uncertain dynamical systems. Features of the second edition include: sufficient conditions for closed-loop stability under output feedback observer-based loop-transfer recovery (OBLTR) with adaptive augmentation; OBLTR applications to aerospace systems; case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; realistic examples and simulation data illustrating key features of the methods described; and problem solutions for instructors and MATLAB® code provided electronically. The theory and practical applications address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles drawn from the authors' extensive professional experience with The Boeing Company. The systems covered are challenging--often open-loop unstable with uncertainties in their dynamics--and thus require both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers should have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. The second edition contains a background summary of linear systems and control systems and an introduction to state observers and output feedback control, helping to make it self-contained. Robust and Adaptive Control teaches senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value
Publisher: Springer Nature
ISBN: 3031383141
Category : Adaptive control systems
Languages : en
Pages : 718
Book Description
Zusammenfassung: Robust and Adaptive Control (second edition) shows readers how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications, the focus of the book is primarily on continuous-time dynamical systems. The two-part text begins with robust and optimal linear control methods and moves on to a self-contained presentation of the design and analysis of model reference adaptive control for nonlinear uncertain dynamical systems. Features of the second edition include: sufficient conditions for closed-loop stability under output feedback observer-based loop-transfer recovery (OBLTR) with adaptive augmentation; OBLTR applications to aerospace systems; case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; realistic examples and simulation data illustrating key features of the methods described; and problem solutions for instructors and MATLAB® code provided electronically. The theory and practical applications address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles drawn from the authors' extensive professional experience with The Boeing Company. The systems covered are challenging--often open-loop unstable with uncertainties in their dynamics--and thus require both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers should have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. The second edition contains a background summary of linear systems and control systems and an introduction to state observers and output feedback control, helping to make it self-contained. Robust and Adaptive Control teaches senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value
European Symposium on Computer Aided Process Engineering - 10
Author: Sauro Pierucci
Publisher: Elsevier
ISBN: 008053130X
Category : Technology & Engineering
Languages : en
Pages : 1207
Book Description
This book includes papers presented at ESCAPE-10, the 10th European Symposium on Computer Aided Process -Engineering, held in Florence, Italy, 7-10th May, 2000. The scientific program reflected two complementary strategic objectives of the 'Computer Aided Process Engineering' (CAPE) Working Party: one checked the status of historically consolidated topics by means of their industrial application and their emerging issues, while the other was addressed to opening new windows to the CAPE audience by inviting adjacent Working Parties to co-operate in the creation of the technical program.The former CAPE strategic objective was covered by the topics: Numerical Methods, Process Design and Synthesis, Dynamics & Control, Process Modeling, Simulation and Optimization.The latter CAPE strategic objective derived from the European Federation of Chemical Engineering (EFCE) promotion of scientific activities which autonomously and transversely work across the Working Parties' terms of references. These activities enhance the exchange of the know-how and knowledge acquired by different Working Parties in homologous fields. They also aim to discover complementary facets useful to the dissemination of tools and of novel procedures.As a consequence, the Working Parties 'Environmental Protection', 'Loss Prevention and Safety Promotion' and 'Multiphase Fluid Flow' were invited to assist in the organization of sessions in the area of: A Process Integrated Approach for: Environmental Benefit, Loss Prevention and Safety, Computational Fluid Dynamics. A total of 473 abstracts from all over the world were evaluated by the International Scientific Committee. Out of them 197 have been finally selected for the presentation and reported into this book. Their authors come from thirty different countries. The selection of the papers was carried out by twenty-eight international reviewers. These proceedings will be a major reference document to the scientific and industrial community and will contribute to the progress in Computer Aided Process Engineering.
Publisher: Elsevier
ISBN: 008053130X
Category : Technology & Engineering
Languages : en
Pages : 1207
Book Description
This book includes papers presented at ESCAPE-10, the 10th European Symposium on Computer Aided Process -Engineering, held in Florence, Italy, 7-10th May, 2000. The scientific program reflected two complementary strategic objectives of the 'Computer Aided Process Engineering' (CAPE) Working Party: one checked the status of historically consolidated topics by means of their industrial application and their emerging issues, while the other was addressed to opening new windows to the CAPE audience by inviting adjacent Working Parties to co-operate in the creation of the technical program.The former CAPE strategic objective was covered by the topics: Numerical Methods, Process Design and Synthesis, Dynamics & Control, Process Modeling, Simulation and Optimization.The latter CAPE strategic objective derived from the European Federation of Chemical Engineering (EFCE) promotion of scientific activities which autonomously and transversely work across the Working Parties' terms of references. These activities enhance the exchange of the know-how and knowledge acquired by different Working Parties in homologous fields. They also aim to discover complementary facets useful to the dissemination of tools and of novel procedures.As a consequence, the Working Parties 'Environmental Protection', 'Loss Prevention and Safety Promotion' and 'Multiphase Fluid Flow' were invited to assist in the organization of sessions in the area of: A Process Integrated Approach for: Environmental Benefit, Loss Prevention and Safety, Computational Fluid Dynamics. A total of 473 abstracts from all over the world were evaluated by the International Scientific Committee. Out of them 197 have been finally selected for the presentation and reported into this book. Their authors come from thirty different countries. The selection of the papers was carried out by twenty-eight international reviewers. These proceedings will be a major reference document to the scientific and industrial community and will contribute to the progress in Computer Aided Process Engineering.
Adaptive Robust Control Systems
Author: Anh Tuan Le
Publisher: BoD – Books on Demand
ISBN: 9535137964
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book focuses on the applications of robust and adaptive control approaches to practical systems. The proposed control systems hold two important features: (1) The system is robust with the variation in plant parameters and disturbances (2) The system adapts to parametric uncertainties even in the unknown plant structure by self-training and self-estimating the unknown factors. The various kinds of robust adaptive controls represented in this book are composed of sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, model-predictive control, fuzzy logic, neural networks, machine learning, and so on. The control objects are very abundant, from cranes, aircrafts, and wind turbines to automobile, medical and sport machines, combustion engines, and electrical machines.
Publisher: BoD – Books on Demand
ISBN: 9535137964
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book focuses on the applications of robust and adaptive control approaches to practical systems. The proposed control systems hold two important features: (1) The system is robust with the variation in plant parameters and disturbances (2) The system adapts to parametric uncertainties even in the unknown plant structure by self-training and self-estimating the unknown factors. The various kinds of robust adaptive controls represented in this book are composed of sliding mode control, model-reference adaptive control, gain-scheduling, H-infinity, model-predictive control, fuzzy logic, neural networks, machine learning, and so on. The control objects are very abundant, from cranes, aircrafts, and wind turbines to automobile, medical and sport machines, combustion engines, and electrical machines.
Cable-Driven Parallel Robots
Author: Tobias Bruckmann
Publisher: Springer Science & Business Media
ISBN: 3642319874
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Gathering presentations to the First International Conference on Cable-Driven Parallel Robots, this book covers classification and definition, kinematics, workspace analysis, cable modeling, hardware/prototype development, control and calibration and more.
Publisher: Springer Science & Business Media
ISBN: 3642319874
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Gathering presentations to the First International Conference on Cable-Driven Parallel Robots, this book covers classification and definition, kinematics, workspace analysis, cable modeling, hardware/prototype development, control and calibration and more.
Robust Adaptive Dynamic Programming
Author: Yu Jiang
Publisher: John Wiley & Sons
ISBN: 1119132649
Category : Science
Languages : en
Pages : 216
Book Description
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 1119132649
Category : Science
Languages : en
Pages : 216
Book Description
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Deterministic Learning Theory for Identification, Recognition, and Control
Author: Cong Wang
Publisher: CRC Press
ISBN: 1351837648
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
Deterministic Learning Theory for Identification, Recognition, and Control presents a unified conceptual framework for knowledge acquisition, representation, and knowledge utilization in uncertain dynamic environments. It provides systematic design approaches for identification, recognition, and control of linear uncertain systems. Unlike many books currently available that focus on statistical principles, this book stresses learning through closed-loop neural control, effective representation and recognition of temporal patterns in a deterministic way. A Deterministic View of Learning in Dynamic Environments The authors begin with an introduction to the concepts of deterministic learning theory, followed by a discussion of the persistent excitation property of RBF networks. They describe the elements of deterministic learning, and address dynamical pattern recognition and pattern-based control processes. The results are applicable to areas such as detection and isolation of oscillation faults, ECG/EEG pattern recognition, robot learning and control, and security analysis and control of power systems. A New Model of Information Processing This book elucidates a learning theory which is developed using concepts and tools from the discipline of systems and control. Fundamental knowledge about system dynamics is obtained from dynamical processes, and is then utilized to achieve rapid recognition of dynamical patterns and pattern-based closed-loop control via the so-called internal and dynamical matching of system dynamics. This actually represents a new model of information processing, i.e. a model of dynamical parallel distributed processing (DPDP).
Publisher: CRC Press
ISBN: 1351837648
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
Deterministic Learning Theory for Identification, Recognition, and Control presents a unified conceptual framework for knowledge acquisition, representation, and knowledge utilization in uncertain dynamic environments. It provides systematic design approaches for identification, recognition, and control of linear uncertain systems. Unlike many books currently available that focus on statistical principles, this book stresses learning through closed-loop neural control, effective representation and recognition of temporal patterns in a deterministic way. A Deterministic View of Learning in Dynamic Environments The authors begin with an introduction to the concepts of deterministic learning theory, followed by a discussion of the persistent excitation property of RBF networks. They describe the elements of deterministic learning, and address dynamical pattern recognition and pattern-based control processes. The results are applicable to areas such as detection and isolation of oscillation faults, ECG/EEG pattern recognition, robot learning and control, and security analysis and control of power systems. A New Model of Information Processing This book elucidates a learning theory which is developed using concepts and tools from the discipline of systems and control. Fundamental knowledge about system dynamics is obtained from dynamical processes, and is then utilized to achieve rapid recognition of dynamical patterns and pattern-based closed-loop control via the so-called internal and dynamical matching of system dynamics. This actually represents a new model of information processing, i.e. a model of dynamical parallel distributed processing (DPDP).