Adaptive Multiresolution Finite Volume Discretization of the Variational Multiscale Method

Adaptive Multiresolution Finite Volume Discretization of the Variational Multiscale Method PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description

Adaptive Multiresolution Finite Volume Discretization of the Variational Multiscale Method

Adaptive Multiresolution Finite Volume Discretization of the Variational Multiscale Method PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description


Adaptive Multiscale Schemes for Conservation Laws

Adaptive Multiscale Schemes for Conservation Laws PDF Author: Siegfried Müller
Publisher: Springer Science & Business Media
ISBN: 9783540443254
Category : Mathematics
Languages : en
Pages : 214

Get Book Here

Book Description
During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construc tion of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation indus try. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expen sive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available re sources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inher ent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids.

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects PDF Author: Clément Cancès
Publisher: Springer
ISBN: 3319573977
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
This first volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) covers various topics including convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers comparing advanced numerical methods for Stokes and Navier–Stokes equations on a benchmark, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asy mptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Finite Volumes for Complex Applications III

Finite Volumes for Complex Applications III PDF Author: Raphaèle Herbin
Publisher: Elsevier Science & Technology
ISBN:
Category : Mathematics
Languages : en
Pages : 860

Get Book Here

Book Description
Scientific computing, which involves the analysis of complex systems in real applications with numerical simulations, is becoming an important field of research in itself, in relation to theoretical investigations and physical experiments. In many cases, the underlying mathematical models consist of large systems of partial differential equations, which have to be solved with high accuracy and efficiency. Among the successful methods, in particular for discretizations on unstructured grids, are the Finite Volume schemes. This publication contains the contributions presented at the third Symposium on Finite Volumes for Complex Applications, held in Porquerolles in June 2002. After a critical review of the submitted papers, 96 papers by authors from more than 20 countries are presented in this volume. The subject of these papers ranges from theoretical and numerical results such as theoretical foundation and validation, adaptivity in space and time, higher order discretization and parallelization, to physical,applications, such as multiphase flow and flows through porous media, magnetohydrodynamics, reacting and turbulent flows, elastic structures, granular avalanches, and image processing.

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples PDF Author: Robert Klöfkorn
Publisher: Springer Nature
ISBN: 3030436519
Category : Computers
Languages : en
Pages : 727

Get Book Here

Book Description
The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Adaptive Variational Multiscale Methods

Adaptive Variational Multiscale Methods PDF Author: Axel Målqvist
Publisher:
ISBN: 9789172916548
Category :
Languages : en
Pages : 13

Get Book Here

Book Description


Ñes pa daṅ ma ñes par g̕ro bai̕ phyag rgya la j̕ug pa ... mdo

Ñes pa daṅ ma ñes par g̕ro bai̕ phyag rgya la j̕ug pa ... mdo PDF Author:
Publisher:
ISBN:
Category : Aphorisms and apothegms
Languages : en
Pages : 46

Get Book Here

Book Description


The Courant–Friedrichs–Lewy (CFL) Condition

The Courant–Friedrichs–Lewy (CFL) Condition PDF Author: Carlos A. de Moura
Publisher: Springer Science & Business Media
ISBN: 0817683941
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant-Friedrichs-Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods.

Principles of Multiscale Modeling

Principles of Multiscale Modeling PDF Author: Weinan E
Publisher: Cambridge University Press
ISBN: 1107096545
Category : Mathematics
Languages : en
Pages : 485

Get Book Here

Book Description
A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1448

Get Book Here

Book Description