Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 142000638X
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.
Adaptive Filtering Primer with MATLAB
Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 142000638X
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.
Publisher: CRC Press
ISBN: 142000638X
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.
Adaptive Filtering Primer with MATLAB
Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 1351837834
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.
Publisher: CRC Press
ISBN: 1351837834
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.
Discrete Random Signal Processing and Filtering Primer with MATLAB
Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 142008934X
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Engineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering. Numerous Useful Examples, Problems, and Solutions – An Extensive and Powerful Review Written for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offers a solid review of recent developments in discrete signal processing. The book also details the latest progress in the revolutionary MATLAB language. A Practical Self-Tutorial That Transcends TheoryThe author introduces an incremental discussion of signal processing and filtering, and presents several new methods that can be used for a more dynamic analysis of random digital signals with both linear and non-linear filtering. Ideal as a self-tutorial, this book includes numerous examples and functions, which can be used to select parameters, perform simulations, and analyze results. This concise guide encourages readers to use MATLAB functions – and those new ones introduced as Book MATLAB Functions – to substitute many different combinations of parameters, giving them a firm grasp of how much each parameter affects results. Much more than a simple review of theory, this book emphasizes problem solving and result analysis, enabling readers to take a hands-on approach to advance their own understanding of MATLAB and the way it is used within signal processing and filtering.
Publisher: CRC Press
ISBN: 142008934X
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Engineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering. Numerous Useful Examples, Problems, and Solutions – An Extensive and Powerful Review Written for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offers a solid review of recent developments in discrete signal processing. The book also details the latest progress in the revolutionary MATLAB language. A Practical Self-Tutorial That Transcends TheoryThe author introduces an incremental discussion of signal processing and filtering, and presents several new methods that can be used for a more dynamic analysis of random digital signals with both linear and non-linear filtering. Ideal as a self-tutorial, this book includes numerous examples and functions, which can be used to select parameters, perform simulations, and analyze results. This concise guide encourages readers to use MATLAB functions – and those new ones introduced as Book MATLAB Functions – to substitute many different combinations of parameters, giving them a firm grasp of how much each parameter affects results. Much more than a simple review of theory, this book emphasizes problem solving and result analysis, enabling readers to take a hands-on approach to advance their own understanding of MATLAB and the way it is used within signal processing and filtering.
Adaptive Filtering
Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 1482253364
Category : Mathematics
Languages : en
Pages : 364
Book Description
Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter. This largely self-contained text: Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.
Publisher: CRC Press
ISBN: 1482253364
Category : Mathematics
Languages : en
Pages : 364
Book Description
Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter. This largely self-contained text: Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.
Adaptive Filters
Author: Behrouz Farhang-Boroujeny
Publisher: John Wiley & Sons
ISBN: 111859133X
Category : Technology & Engineering
Languages : en
Pages : 800
Book Description
This second edition of Adaptive Filters: Theory and Applications has been updated throughout to reflect the latest developments in this field; notably an increased coverage given to the practical applications of the theory to illustrate the much broader range of adaptive filters applications developed in recent years. The book offers an easy to understand approach to the theory and application of adaptive filters by clearly illustrating how the theory explained in the early chapters of the book is modified for the various applications discussed in detail in later chapters. This integrated approach makes the book a valuable resource for graduate students; and the inclusion of more advanced applications including antenna arrays and wireless communications makes it a suitable technical reference for engineers, practitioners and researchers. Key features: • Offers a thorough treatment of the theory of adaptive signal processing; incorporating new material on transform domain, frequency domain, subband adaptive filters, acoustic echo cancellation and active noise control. • Provides an in-depth study of applications which now includes extensive coverage of OFDM, MIMO and smart antennas. • Contains exercises and computer simulation problems at the end of each chapter. • Includes a new companion website hosting MATLAB® simulation programs which complement the theoretical analyses, enabling the reader to gain an in-depth understanding of the behaviours and properties of the various adaptive algorithms.
Publisher: John Wiley & Sons
ISBN: 111859133X
Category : Technology & Engineering
Languages : en
Pages : 800
Book Description
This second edition of Adaptive Filters: Theory and Applications has been updated throughout to reflect the latest developments in this field; notably an increased coverage given to the practical applications of the theory to illustrate the much broader range of adaptive filters applications developed in recent years. The book offers an easy to understand approach to the theory and application of adaptive filters by clearly illustrating how the theory explained in the early chapters of the book is modified for the various applications discussed in detail in later chapters. This integrated approach makes the book a valuable resource for graduate students; and the inclusion of more advanced applications including antenna arrays and wireless communications makes it a suitable technical reference for engineers, practitioners and researchers. Key features: • Offers a thorough treatment of the theory of adaptive signal processing; incorporating new material on transform domain, frequency domain, subband adaptive filters, acoustic echo cancellation and active noise control. • Provides an in-depth study of applications which now includes extensive coverage of OFDM, MIMO and smart antennas. • Contains exercises and computer simulation problems at the end of each chapter. • Includes a new companion website hosting MATLAB® simulation programs which complement the theoretical analyses, enabling the reader to gain an in-depth understanding of the behaviours and properties of the various adaptive algorithms.
Least-Mean-Square Adaptive Filters
Author: Simon Haykin
Publisher: John Wiley & Sons
ISBN: 9780471215707
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Edited by the original inventor of the technology. Includes contributions by the foremost experts in the field. The only book to cover these topics together.
Publisher: John Wiley & Sons
ISBN: 9780471215707
Category : Technology & Engineering
Languages : en
Pages : 516
Book Description
Edited by the original inventor of the technology. Includes contributions by the foremost experts in the field. The only book to cover these topics together.
Unsupervised Signal Processing
Author: João Marcos Travassos Romano
Publisher: CRC Press
ISBN: 1420019465
Category : Computers
Languages : en
Pages : 332
Book Description
Unsupervised Signal Processing: Channel Equalization and Source Separation provides a unified, systematic, and synthetic presentation of the theory of unsupervised signal processing. Always maintaining the focus on a signal processing-oriented approach, this book describes how the subject has evolved and assumed a wider scope that covers several topics, from well-established blind equalization and source separation methods to novel approaches based on machine learning and bio-inspired algorithms. From the foundations of statistical and adaptive signal processing, the authors explore and elaborate on emerging tools, such as machine learning-based solutions and bio-inspired methods. With a fresh take on this exciting area of study, this book: Provides a solid background on the statistical characterization of signals and systems and on linear filtering theory Emphasizes the link between supervised and unsupervised processing from the perspective of linear prediction and constrained filtering theory Addresses key issues concerning equilibrium solutions and equivalence relationships in the context of unsupervised equalization criteria Provides a systematic presentation of source separation and independent component analysis Discusses some instigating connections between the filtering problem and computational intelligence approaches. Building on more than a decade of the authors’ work at DSPCom laboratory, this book applies a fresh conceptual treatment and mathematical formalism to important existing topics. The result is perhaps the first unified presentation of unsupervised signal processing techniques—one that addresses areas including digital filters, adaptive methods, and statistical signal processing. With its remarkable synthesis of the field, this book provides a new vision to stimulate progress and contribute to the advent of more useful, efficient, and friendly intelligent systems.
Publisher: CRC Press
ISBN: 1420019465
Category : Computers
Languages : en
Pages : 332
Book Description
Unsupervised Signal Processing: Channel Equalization and Source Separation provides a unified, systematic, and synthetic presentation of the theory of unsupervised signal processing. Always maintaining the focus on a signal processing-oriented approach, this book describes how the subject has evolved and assumed a wider scope that covers several topics, from well-established blind equalization and source separation methods to novel approaches based on machine learning and bio-inspired algorithms. From the foundations of statistical and adaptive signal processing, the authors explore and elaborate on emerging tools, such as machine learning-based solutions and bio-inspired methods. With a fresh take on this exciting area of study, this book: Provides a solid background on the statistical characterization of signals and systems and on linear filtering theory Emphasizes the link between supervised and unsupervised processing from the perspective of linear prediction and constrained filtering theory Addresses key issues concerning equilibrium solutions and equivalence relationships in the context of unsupervised equalization criteria Provides a systematic presentation of source separation and independent component analysis Discusses some instigating connections between the filtering problem and computational intelligence approaches. Building on more than a decade of the authors’ work at DSPCom laboratory, this book applies a fresh conceptual treatment and mathematical formalism to important existing topics. The result is perhaps the first unified presentation of unsupervised signal processing techniques—one that addresses areas including digital filters, adaptive methods, and statistical signal processing. With its remarkable synthesis of the field, this book provides a new vision to stimulate progress and contribute to the advent of more useful, efficient, and friendly intelligent systems.
Adaptive IIR Filtering in Signal Processing and Control
Author: Phillip Regalia
Publisher: Routledge
ISBN: 1351468944
Category : Technology & Engineering
Languages : en
Pages : 706
Book Description
Integrates rational approximation with adaptive filtering, providing viable, numerically reliable procedures for creating adaptive infinite impulse response (IIR) filters. The choice of filter structure to adapt, algorithm design and the approximation properties for each type of algorithm are also addressed. This work recasts the theory of adaptive IIR filters by concentrating on recursive lattice filters, freeing systems from the need for direct-form filters.;A solutions manual is available for instructors only. College or university bookstores may order five or more copies at a special student price which is available upon request.
Publisher: Routledge
ISBN: 1351468944
Category : Technology & Engineering
Languages : en
Pages : 706
Book Description
Integrates rational approximation with adaptive filtering, providing viable, numerically reliable procedures for creating adaptive infinite impulse response (IIR) filters. The choice of filter structure to adapt, algorithm design and the approximation properties for each type of algorithm are also addressed. This work recasts the theory of adaptive IIR filters by concentrating on recursive lattice filters, freeing systems from the need for direct-form filters.;A solutions manual is available for instructors only. College or university bookstores may order five or more copies at a special student price which is available upon request.
Fundamentals of Digital Image Processing
Author: Chris Solomon
Publisher: John Wiley & Sons
ISBN: 1119957001
Category : Science
Languages : en
Pages : 364
Book Description
This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) . Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.
Publisher: John Wiley & Sons
ISBN: 1119957001
Category : Science
Languages : en
Pages : 364
Book Description
This is an introductory to intermediate level text on the science of image processing, which employs the Matlab programming language to illustrate some of the elementary, key concepts in modern image processing and pattern recognition. The approach taken is essentially practical and the book offers a framework within which the concepts can be understood by a series of well chosen examples, exercises and computer experiments, drawing on specific examples from within science, medicine and engineering. Clearly divided into eleven distinct chapters, the book begins with a fast-start introduction to image processing to enhance the accessibility of later topics. Subsequent chapters offer increasingly advanced discussion of topics involving more challenging concepts, with the final chapter looking at the application of automated image classification (with Matlab examples) . Matlab is frequently used in the book as a tool for demonstrations, conducting experiments and for solving problems, as it is both ideally suited to this role and is widely available. Prior experience of Matlab is not required and those without access to Matlab can still benefit from the independent presentation of topics and numerous examples. Features a companion website www.wiley.com/go/solomon/fundamentals containing a Matlab fast-start primer, further exercises, examples, instructor resources and accessibility to all files corresponding to the examples and exercises within the book itself. Includes numerous examples, graded exercises and computer experiments to support both students and instructors alike.
Digital Signal Processing Using MATLAB for Students and Researchers
Author: John W. Leis
Publisher: John Wiley & Sons
ISBN: 1118033809
Category : Science
Languages : en
Pages : 352
Book Description
Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.
Publisher: John Wiley & Sons
ISBN: 1118033809
Category : Science
Languages : en
Pages : 352
Book Description
Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.