Activated Sludge Models

Activated Sludge Models PDF Author: The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment
Publisher: IWA Publishing
ISBN: 9781900222242
Category : Science
Languages : en
Pages : 132

Get Book Here

Book Description
This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time. Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research. Contents ASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2: Introduction, ASM 2, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Wastewater Characterization for Activated Sludge Processes, Calibration of the ASM 2, Model Limitations, Conclusion, Bibliography ASM 1: Introduction, Method of Model Presentation, Model Incorporating Carbon Oxidation Nitrification and Denitrification, Characterization of Wastewater and Estimation of Parameter Values, Typical Parameter Ranges, Default Values, and Effects of Environmental Factors, Assumptions, Restrictions and Constraints, Implementation of the Activated Sludge Model Scientific and Technical Report No.9

Guidelines for Using Activated Sludge Models

Guidelines for Using Activated Sludge Models PDF Author: Leiv Rieger
Publisher: IWA Publishing
ISBN: 1843391740
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
Mathematical modelling of activated sludge systems is used widely for plant design, optimisation, training, controller design and research. The quality of simulation studies varies depending on the project objectives, finances and expertise available. Consideration has to be given to the model accuracy and the amount of time required carrying out a simulation study to produce the desired accuracy. Inconsistent approaches and insufficient documentation make quality assessment and comparison of simulation results difficult or almost impossible. A general framework for the application of activated sludge models is needed in order to overcome these obstacles. The genesis of the Good Modelling Practice (GMP) Task Group lies in a workshop held at the 4th IWA World Water Congress in Marrakech, Morocco where members of research groups active in wastewater treatment modelling came together to develop plans to synthesize the best practices of modellers from all over the world. The most cited protocols were included in the work, amongst others from: HSG (Hochschulgruppe), STOWA, BIOMATH and WERF. The goal of the group is to set up an internationally accepted framework to deal with the ASM type models in practice. This framework shall make modelling more straightforward and systematic to use especially for practitioners and consultants. Additionally, it shall help to define quality levels for simulation results, a procedure to assess this quality and to assist in the proper use of the models. The framework will describe a methodology for goal-oriented application of activated sludge models demonstrated by means of a concise guideline about the procedure of a simulation study and some illustrative case studies. The case studies shall give examples for the required data quality and quantity and the effort for calibration/validation with respect to a defined goal. The final report will include an extended appendix with additional information and details of methodologies. Additional features in Guidelines for Using Activated Sludge Models include a chapter on modelling industrial wastewater, an overview on the history, current practice and future of activated sludge modelling and several explanatory case studies. It can be used as an introductory book to learn about Good Modelling Practice (GMP) in activated sludge modelling and will be of special interest for process engineers who have no prior knowledge of modelling or for lecturers who need a textbook for their students. The STR can also be used as a modelling reference book and includes an extended appendix with additional information and details of methodologies. Scientific and Technical Report No. 22

Applications of Activated Sludge Models

Applications of Activated Sludge Models PDF Author: Damir Brdjanovic
Publisher: IWA Publishing
ISBN: 1780404638
Category : Science
Languages : en
Pages : 472

Get Book Here

Book Description
In 1982 the International Association on Water Pollution Research and Control (IAWPRC), as it was then called, established a Task Group on Mathematical Modelling for Design and Operation of Activated Sludge Processes. The aim of the Task Group was to create a common platform that could be used for the future development of models for COD and N removal with a minimum of complexity. As the collaborative result of the work of several modelling groups, the Activated Sludge Model No. 1 (ASM1) was published in 1987, exactly 25 years ago. The ASM1 can be considered as the reference model, since this model triggered the general acceptance of wastewater treatment modelling, first in the research community and later on also in practice. ASM1 has become a reference for many scientific and practical projects, and has been implemented (in some cases with modifications) in most of the commercial software available for modelling and simulation of plants for N removal. The models have grown more complex over the years, from ASM1, including N removal processes, to ASM2 (and its variations) including P removal processes, and ASM3 that corrects the deficiencies of ASM1 and is based on a metabolic approach to modelling. So far, ASM1 is the most widely applied. Applications of Activated Sludge Models has been prepared in celebration of 25 years of ASM1 and in tribute to the activated sludge modelling pioneer, the late Professor G.v.R. Marrais. It consists of a dozen of practical applications for ASM models to model development, plant optimization, extension, upgrade, retrofit and troubleshooting, carried out by the members of the Delft modelling group over the last two decades.

Mathematical Modelling and Computer Simulation of Activated Sludge Systems

Mathematical Modelling and Computer Simulation of Activated Sludge Systems PDF Author: Jacek Makinia
Publisher: IWA Publishing
ISBN: 1780409516
Category : Science
Languages : en
Pages : 682

Get Book Here

Book Description
Mathematical Modelling and Computer Simulation of Activated Sludge Systems – Second Edition provides, from the process engineering perspective, a comprehensive and up-to-date overview regarding various aspects of the mechanistic (“white box”) modelling and simulation of advanced activated sludge systems performing biological nutrient removal. In the new edition of the book, a special focus is given to nitrogen removal and the latest developments in modelling the innovative nitrogen removal processes. Furthermore, a new section on micropollutant removal has been added. The focus of modelling has been shifting in the last years to models that can describe the performance of a whole plant (plant-wide modelling). The expanded part of this new edition introduces models describing the most important processes interrelated with the mainstream activated sludge systems as well as models describing the energy balance, operating costs and environmental impact. The complex process evaluation, including minimization of energy consumption and carbon footprint, is in line with the present and future wastewater treatment goals. By combining a general introduction and a textbook, this book serves both intermediate and more experienced model users, both researchers and practitioners, as a comprehensive guide to modelling and simulation studies. The book can be used as a supplemental material at graduate and post-graduate levels of wastewater engineering/modelling courses.

Methods for Wastewater Characterization in Activated Sludge Modelling

Methods for Wastewater Characterization in Activated Sludge Modelling PDF Author: Henryk Melcer
Publisher: IWA Publishing
ISBN: 1843396629
Category : Science
Languages : en
Pages : 600

Get Book Here

Book Description
Mathematical modeling is a useful tool for the design, analysis and control of wastewater treatment systems. The activated sludge process is one of the most common processes used in wastewater treatment, and therefore is a particularly important candidate for the application of mathematical models. In the 1980s, a task group organized by the International Association on Water Quality (IAWQ) developed a conceptual model of the activated sludge process, which has become an industry-wide standard for the development of computer-based activated sludge models. A recent version of the IAWQ model incorporates 19 components, 17 processes, and numerous rate and stoichiometric coefficients. It is difficult and costly to quantify all of the necessary coefficients for any given application of the model; consequently, it is important to identify the most critical wastewater and biomass components and the relevant coefficients to be quantified for the most common uses of the model. It is also important to provide guidance to potential model users on the use of default and/or estimated values for the remaining parameters.

Biological Wastewater Treatment

Biological Wastewater Treatment PDF Author: Mogens Henze
Publisher: IWA Publishing (International Water Assoc)
ISBN:
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.

Environmental Engineering and Activated Sludge Processes

Environmental Engineering and Activated Sludge Processes PDF Author: Olga Sanchez
Publisher: CRC Press
ISBN: 1771883898
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
This title includes a number of Open Access chapters. The activated sludge process is one of the most versatile and commonly used wastewater treatment systems in the world. In the past, when industrial wastewater treatment focused on removing biological oxygen demand and suspended solids, waste water plants needed different processes and technology

Benchmarking of Control Strategies for Wastewater Treatment Plants

Benchmarking of Control Strategies for Wastewater Treatment Plants PDF Author: Krist V. Gernaey
Publisher: IWA Publishing
ISBN: 1843391465
Category : Science
Languages : en
Pages : 166

Get Book Here

Book Description
Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena and to the large range of time constants (from a few minutes to several days). The lack of standard evaluation criteria is also a tremendous disadvantage. To really enhance the acceptance of innovative control strategies, such an evaluation needs to be based on a rigorous methodology including a simulation model, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol. This book is a Scientific and Technical Report produced by the IWA Task Group on Benchmarking of Control Strategies for Wastewater Treatment Plants. The goal of the Task Group includes developing models and simulation tools that encompass the most typical unit processes within a wastewater treatment system (primary treatment, activated sludge, sludge treatment, etc.), as well as tools that will enable the evaluation of long-term control strategies and monitoring tasks (i.e. automatic detection of sensor and process faults). Work on these extensions has been carried out by the Task Group during the past five years, and the main results are summarized in Benchmarking of Control Strategies for Wastewater Treatment Plants. Besides a description of the final version of the already well-known Benchmark Simulation Model no. 1 (BSM1), the book includes the Benchmark Simulation Model no. 1 Long-Term (BSM1_LT) – with focus on benchmarking of process monitoring tasks – and the plant-wide Benchmark Simulation Model no. 2 (BSM2). Authors: Krist V. Gernaey, Technical University of Denmark, Lyngby, Denmark, Ulf Jeppsson, Lund University, Sweden, Peter A. Vanrolleghem, Université Laval, Quebec, Canada and John B. Copp, Primodal Inc., Hamilton, Ontario, Canada

Dynamical Modelling & Estimation in Wastewater Treatment Processes

Dynamical Modelling & Estimation in Wastewater Treatment Processes PDF Author: D. Dochain
Publisher: IWA Publishing
ISBN: 9781900222501
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
Environmental quality is becoming an increasing concern in our society. In that context, waste and wastewater treatment, and more specifically biological wastewater treatment processes play an important role. In this book, we concentrate on the mathematical modelling of these processes. The main purpose is to provide the increasing number of professionals who are using models to design, optimise and control wastewater treatment processes with the necessary background for their activities of model building, selection and calibration. The book deals specifically with dynamic models because they allow us to describe the behaviour of treatment plants under the highly dynamic conditions that we want them to operate (e.g. Sequencing Batch Reactors) or we have to operate them (e.g. storm conditions, spills). Further extension is provided to new reactor systems for which partial differential equation descriptions are necessary to account for their distributed parameter nature (e.g. settlers, fixed bed reactors). The model building exercise is introduced as a step-wise activity that, in this book, starts from mass balancing principles. In many cases, different hypotheses and their corresponding models can be proposed for a particular process. It is therefore essential to be able to select from these candidate models in an objective manner. To this end, structure characterisation methods are introduced. Important sections of the book deal with the collection of high quality data using optimal experimental design, parameter estimation techniques for calibration and the on-line use of models in state and parameter estimators. Contents Dynamical Modelling Dynamical Mass Balance Model Building and Analysis Structure Characterisation (SC) Structural Identifiability Practical Identifiability and Optimal Experiment Design for Parameter Estimation (OED/PE) Estimation of Model Parameters Recursive State and Parameter Estimation Glossary Nomenclature

Frontiers in Wastewater Treatment and Modelling

Frontiers in Wastewater Treatment and Modelling PDF Author: Giorgio Mannina
Publisher: Springer
ISBN: 3319584219
Category : Technology & Engineering
Languages : en
Pages : 754

Get Book Here

Book Description
This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contributions were selected by means of a rigorous peer-review process and highlight many exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different water specialists.