Author: V. K. Varadan
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 712
Book Description
Acoustic, Electromagnetic, and Elastic Wave Scattering--focus on the T-matrix Approach
Author: V. K. Varadan
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 712
Book Description
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 712
Book Description
Acoustic Electromagnetic and Elastic Wave Scattering
Author: Vijay K. Varadan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Low and High Frequency Asymptotics
Author: V.K. Varadan
Publisher: Elsevier
ISBN: 1483290786
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.
Publisher: Elsevier
ISBN: 1483290786
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.
Scattering, Two-Volume Set
Author: E. R. Pike
Publisher: Academic Press
ISBN: 0126137609
Category : Science
Languages : en
Pages : 985
Book Description
Part 1: SCATTERING OF WAVES BY MACROSCOPIC TARGET -- Interdisciplinary aspects of wave scattering -- Acoustic scattering -- Acoustic scattering: approximate methods -- Electromagnetic wave scattering: theory -- Electromagnetic wave scattering: approximate and numerical methods -- Electromagnetic wave scattering: applications -- Elastodynamic wave scattering: theory -- Elastodynamic wave scattering: Applications -- Scattering in Oceans -- Part 2: SCATTERING IN MICROSCOPIC PHYSICS AND CHEMICAL PHYSICS -- Introduction to direct potential scattering -- Introduction to Inverse Potential Scattering -- Visible and Near-visible Light Scattering -- Practical Aspects of Visible and Near-visible Light Scattering -- Nonlinear Light Scattering -- Atomic and Molecular Scattering: Introduction to Scattering in Chemical -- X-ray Scattering -- Neutron Scattering -- Electron Diffraction and Scattering -- Part 3: SCATTERING IN NUCLEAR PHYSICS -- Nuclear Physics -- Part 4: PARTICLE SCATTERING -- State of the Art of Peturbative Methods -- Scattering Through Electro-weak Interactions (the Fermi Scale) -- Scattering Through Strong Interactions (the Hadronic or QCD Scale) -- Part 5: SCATTERING AT EXTREME PHYSICAL SCALES -- Scattering at Extreme Physical Scales -- Part 6: SCATTERING IN MATHEMATICS AND NON-PHYSICAL SCIENCES -- Relations with Other Mathematical Theories -- Inverse Scattering Transform and Non-linear Partial Differenttial Equations -- Scattering of Mathematical Objects.
Publisher: Academic Press
ISBN: 0126137609
Category : Science
Languages : en
Pages : 985
Book Description
Part 1: SCATTERING OF WAVES BY MACROSCOPIC TARGET -- Interdisciplinary aspects of wave scattering -- Acoustic scattering -- Acoustic scattering: approximate methods -- Electromagnetic wave scattering: theory -- Electromagnetic wave scattering: approximate and numerical methods -- Electromagnetic wave scattering: applications -- Elastodynamic wave scattering: theory -- Elastodynamic wave scattering: Applications -- Scattering in Oceans -- Part 2: SCATTERING IN MICROSCOPIC PHYSICS AND CHEMICAL PHYSICS -- Introduction to direct potential scattering -- Introduction to Inverse Potential Scattering -- Visible and Near-visible Light Scattering -- Practical Aspects of Visible and Near-visible Light Scattering -- Nonlinear Light Scattering -- Atomic and Molecular Scattering: Introduction to Scattering in Chemical -- X-ray Scattering -- Neutron Scattering -- Electron Diffraction and Scattering -- Part 3: SCATTERING IN NUCLEAR PHYSICS -- Nuclear Physics -- Part 4: PARTICLE SCATTERING -- State of the Art of Peturbative Methods -- Scattering Through Electro-weak Interactions (the Fermi Scale) -- Scattering Through Strong Interactions (the Hadronic or QCD Scale) -- Part 5: SCATTERING AT EXTREME PHYSICAL SCALES -- Scattering at Extreme Physical Scales -- Part 6: SCATTERING IN MATHEMATICS AND NON-PHYSICAL SCIENCES -- Relations with Other Mathematical Theories -- Inverse Scattering Transform and Non-linear Partial Differenttial Equations -- Scattering of Mathematical Objects.
Scattering and Attenuation of Seismic Waves, Part II
Author: WU
Publisher: Birkhäuser
ISBN: 3034863632
Category : Science
Languages : en
Pages : 192
Book Description
Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 131 (1989), No. 4
Publisher: Birkhäuser
ISBN: 3034863632
Category : Science
Languages : en
Pages : 192
Book Description
Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 131 (1989), No. 4
Low Frequency Scattering
Author: George Dassios
Publisher: Oxford University Press
ISBN: 9780198536789
Category : Language Arts & Disciplines
Languages : en
Pages : 322
Book Description
Scattering theory deals with the interactions of waves with obstacles in their path, and low frequency scattering occurs when the obstacles involved are very small. This book gives an overview of the subject for graduates and researchers, for the first time unifying the theories covering acoustic, electromagnetic and elastic waves.
Publisher: Oxford University Press
ISBN: 9780198536789
Category : Language Arts & Disciplines
Languages : en
Pages : 322
Book Description
Scattering theory deals with the interactions of waves with obstacles in their path, and low frequency scattering occurs when the obstacles involved are very small. This book gives an overview of the subject for graduates and researchers, for the first time unifying the theories covering acoustic, electromagnetic and elastic waves.
Theory of Wave Scattering From Random Rough Surfaces,
Author: J. A. Ogilvy
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 300
Book Description
A review of theories developed for the study of acoustic, elastic and electromagnetic wave scattering from randomly rough surfaces, and a comprehensive summary of the latest techniques. Different theories are illustrated by experimental data.With applications in radar, sonar, ultrasonics and optics this book will be invaluable to graduate students, researchers and engineers.
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 300
Book Description
A review of theories developed for the study of acoustic, elastic and electromagnetic wave scattering from randomly rough surfaces, and a comprehensive summary of the latest techniques. Different theories are illustrated by experimental data.With applications in radar, sonar, ultrasonics and optics this book will be invaluable to graduate students, researchers and engineers.
Theoretical And Computational Acoustics - Proceedings Of The International Conference (In 2 Volumes)
Author: John E Ffowcs Williams
Publisher: World Scientific
ISBN: 9814551724
Category :
Languages : en
Pages : 1028
Book Description
This conference provided a forum for active researchers to discuss the state of the art in theoretical and computational acoustics. Topics covered structural acoustics, scattering, 3-dimensional propagational problems, fluid/elastic interfaces, wavelets and their impact on acoustics, computational methods and supercomputing.
Publisher: World Scientific
ISBN: 9814551724
Category :
Languages : en
Pages : 1028
Book Description
This conference provided a forum for active researchers to discuss the state of the art in theoretical and computational acoustics. Topics covered structural acoustics, scattering, 3-dimensional propagational problems, fluid/elastic interfaces, wavelets and their impact on acoustics, computational methods and supercomputing.
Light Scattering by Nonspherical Particles
Author: Michael I. Mishchenko
Publisher: Elsevier
ISBN: 0080510205
Category : Science
Languages : en
Pages : 721
Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. - The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications - Individual chapters are written by leading experts in respective areas - Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals - Consistent use of unified definitions and notation makes the book a coherent volume - An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles - Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web - Extensively illustrated with over 200 figures, 4 in color
Publisher: Elsevier
ISBN: 0080510205
Category : Science
Languages : en
Pages : 721
Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. - The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications - Individual chapters are written by leading experts in respective areas - Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals - Consistent use of unified definitions and notation makes the book a coherent volume - An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles - Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web - Extensively illustrated with over 200 figures, 4 in color
Fundamentals of Ultrasonic Nondestructive Evaluation
Author: Lester W. Schmerr Jr.
Publisher: Springer
ISBN: 3319304631
Category : Technology & Engineering
Languages : en
Pages : 765
Book Description
This extensively revised and updated second edition of a widely read classic presents the use of ultrasound in nondestructive evaluation (NDE) inspections. Retaining the first edition's use of wave propagation /scattering theory and linear system theory, this volume also adds significant new material including: the introduction of MATLAB® functions and scripts that evaluate key results involving beam propagation and scattering, flaw sizing, and the modeling of ultrasonic systems. elements of Gaussian beam theory and a multi-Gaussian ultrasonic beam model for bulk wave transducers. a new chapter on the connection between ultrasonic modeling and probability of detection (POD) and reliability models. new and improved derivations of ultrasonic measurement models. updated coverage of ultrasonic simulators that have been developed around the world. Students, engineers, and researchers working in the ultrasonic NDE field will find a wealth of information on the modeling of ultrasonic inspections and the fundamental ultrasonic experiments that support those models in this new edition.
Publisher: Springer
ISBN: 3319304631
Category : Technology & Engineering
Languages : en
Pages : 765
Book Description
This extensively revised and updated second edition of a widely read classic presents the use of ultrasound in nondestructive evaluation (NDE) inspections. Retaining the first edition's use of wave propagation /scattering theory and linear system theory, this volume also adds significant new material including: the introduction of MATLAB® functions and scripts that evaluate key results involving beam propagation and scattering, flaw sizing, and the modeling of ultrasonic systems. elements of Gaussian beam theory and a multi-Gaussian ultrasonic beam model for bulk wave transducers. a new chapter on the connection between ultrasonic modeling and probability of detection (POD) and reliability models. new and improved derivations of ultrasonic measurement models. updated coverage of ultrasonic simulators that have been developed around the world. Students, engineers, and researchers working in the ultrasonic NDE field will find a wealth of information on the modeling of ultrasonic inspections and the fundamental ultrasonic experiments that support those models in this new edition.