Accurate and Efficient Numerical Methods for Nonlocal Problems

Accurate and Efficient Numerical Methods for Nonlocal Problems PDF Author: Wei Zhao
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Accurate and Efficient Numerical Methods for Nonlocal Problems

Accurate and Efficient Numerical Methods for Nonlocal Problems PDF Author: Wei Zhao
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Efficient Numerical Methods for Non-local Operators

Efficient Numerical Methods for Non-local Operators PDF Author: Steffen Börm
Publisher: European Mathematical Society
ISBN: 9783037190913
Category : Matrices
Languages : en
Pages : 452

Get Book Here

Book Description
Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix equations used in control theory. $\mathcal{H}^2$-matrices offer a refinement of hierarchical matrices: Using a multilevel representation of submatrices, the efficiency can be significantly improved, particularly for large problems. This book gives an introduction to the basic concepts and presents a general framework that can be used to analyze the complexity and accuracy of $\mathcal{H}^2$-matrix techniques. Starting from basic ideas of numerical linear algebra and numerical analysis, the theory is developed in a straightforward and systematic way, accessible to advanced students and researchers in numerical mathematics and scientific computing. Special techniques are required only in isolated sections, e.g., for certain classes of model problems.

Efficient Numerical Methods for Non-local Operators

Efficient Numerical Methods for Non-local Operators PDF Author: Steffen Börm
Publisher:
ISBN: 9783037195918
Category : Matrices
Languages : en
Pages : 432

Get Book Here

Book Description


Harmonic Analysis and Boundary Value Problems in the Complex Domain

Harmonic Analysis and Boundary Value Problems in the Complex Domain PDF Author: M.M. Djrbashian
Publisher: Birkhäuser
ISBN: 3034885490
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
As is well known, the first decades of this century were a period of elaboration of new methods in complex analysis. This elaboration had, in particular, one char acteristic feature, consisting in the interfusion of some concepts and methods of harmonic and complex analyses. That interfusion turned out to have great advan tages and gave rise to a vast number of significant results, of which we want to mention especially the classical results on the theory of Fourier series in L2 ( -7r, 7r) and their continual analog - Plancherel's theorem on the Fourier transform in L2 ( -00, +00). We want to note also two important Wiener and Paley theorems on parametric integral representations of a subclass of entire functions of expo nential type in the Hardy space H2 over a half-plane. Being under the strong influence of these results, the author began in the fifties a series of investigations in the theory of integral representations of analytic and entire functions as well as in the theory of harmonic analysis in the com plex domain. These investigations were based on the remarkable properties of the asymptotics of the entire function (p, J1 > 0), which was introduced into mathematical analysis by Mittag-Leffler for the case J1 = 1. In the process of investigation, the scope of some classical results was essentially enlarged, and the results themselves were evaluated.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Angelamaria Cardone
Publisher: Springer Nature
ISBN: 981197716X
Category : Mathematics
Languages : en
Pages : 152

Get Book Here

Book Description
The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12–14, 2021. All contributions are original and not published elsewhere. The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult than in the integer case. Hence, numerical analysis plays a decisive role since practically every type of application of fractional calculus requires adequate numerical tools. The aim of this book is therefore to collect and spread ideas mainly coming from the two communities of numerical analysts operating in this field - the one working on methods for the solution of differential problems and the one working on the numerical linear algebra side - to share knowledge and create synergies. At the same time, the book intends to realize a direct bridge between researchers working on applications and numerical analysts. Indeed, the book collects papers on applications, numerical methods for differential problems of fractional order, and related aspects in numerical linear algebra. The target audience of the book is scholars interested in recent advancements in fractional calculus.

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists PDF Author: Joe D. Hoffman
Publisher: CRC Press
ISBN: 1482270609
Category : Mathematics
Languages : en
Pages : 840

Get Book Here

Book Description
Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."

Nonlocal Modeling, Analysis, and Computation

Nonlocal Modeling, Analysis, and Computation PDF Author: Qiang Du
Publisher: SIAM
ISBN: 1611975611
Category : Science
Languages : en
Pages : 181

Get Book Here

Book Description
Studies of complexity, singularity, and anomaly using nonlocal continuum models are steadily gaining popularity. This monograph provides an introduction to basic analytical, computational, and modeling issues and to some of the latest developments in these areas. Nonlocal Modeling, Analysis, and Computation includes motivational examples of nonlocal models, basic building blocks of nonlocal vector calculus, elements of theory for well-posedness and nonlocal spaces, connections to and coupling with local models, convergence and compatibility of numerical approximations, and various applications, such as nonlocal dynamics of anomalous diffusion and nonlocal peridynamic models of elasticity and fracture mechanics. A particular focus is on nonlocal systems with a finite range of interaction to illustrate their connection to local partial differential equations and fractional PDEs. These models are designed to represent nonlocal interactions explicitly and to remain valid for complex systems involving possible singular solutions and they have the potential to be alternatives for as well as bridges to existing models. The author discusses ongoing studies of nonlocal models to encourage the discovery of new mathematical theory for nonlocal continuum models and offer new perspectives on traditional models, analytical techniques, and algorithms.

New Numerical Scheme with Newton Polynomial

New Numerical Scheme with Newton Polynomial PDF Author: Abdon Atangana
Publisher: Academic Press
ISBN: 0323858023
Category : Mathematics
Languages : en
Pages : 460

Get Book Here

Book Description
New Numerical Scheme with Newton Polynomial: Theory, Methods, and Applications provides a detailed discussion on the underpinnings of the theory, methods and real-world applications of this numerical scheme. The book's authors explore how this efficient and accurate numerical scheme is useful for solving partial and ordinary differential equations, as well as systems of ordinary and partial differential equations with different types of integral operators. Content coverage includes the foundational layers of polynomial interpretation, Lagrange interpolation, and Newton interpolation, followed by new schemes for fractional calculus. Final sections include six chapters on the application of numerical scheme to a range of real-world applications. Over the last several decades, many techniques have been suggested to model real-world problems across science, technology and engineering. New analytical methods have been suggested in order to provide exact solutions to real-world problems. Many real-world problems, however, cannot be solved using analytical methods. To handle these problems, researchers need to rely on numerical methods, hence the release of this important resource on the topic at hand. Offers an overview of the field of numerical analysis and modeling real-world problems Provides a deeper understanding and comparison of Adams-Bashforth and Newton polynomial numerical methods Presents applications of local fractional calculus to a range of real-world problems Explores new scheme for fractal functions and investigates numerical scheme for partial differential equations with integer and non-integer order Includes codes and examples in MATLAB in all relevant chapters

Numerical Methods for Scientists and Engineers

Numerical Methods for Scientists and Engineers PDF Author: H.M. Antia
Publisher: Springer Science & Business Media
ISBN: 9783764367152
Category : Mathematics
Languages : en
Pages : 872

Get Book Here

Book Description
This book presents an exhaustive and in-depth exposition of the various numerical methods used in scientific and engineering computations. It emphasises the practical aspects of numerical computation and discusses various techniques in sufficient detail to enable their implementation in solving a wide range of problems.

Numerical Methods that Work

Numerical Methods that Work PDF Author: Forman S. Acton
Publisher: MAA
ISBN: 9780883854501
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
Numerical Methods that Work, originally published in 1970, has been reissued by the MAA with a new preface and some additional problems. Acton deals with a commonsense approach to numerical algorithms for the solution of equations: algebraic, transcendental, and differential. He assumes that a computer is available for performing the bulk of the arithmetic. The book is divided into two parts, either of which could form the basis of a one-semester course in numerical methods. Part I discusses most of the standard techniques: roots of transcendental equations, roots of polynomials, eigenvalues of symmetric matrices, and so on. Part II cuts across the basic tools, stressing such commonplace problems as extrapolation, removal of singularities, and loss of significant figures. The book is written with clarity and precision, intended for practical rather than theoretical use. This book will interest mathematicians, both pure and applied, as well as any scientist or engineer working with numerical problems.