Author: Peter Wriggers
Publisher: Springer
ISBN: 3319595482
Category : Science
Languages : en
Pages : 356
Book Description
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’s last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.
Biomedical Technology
Author: Peter Wriggers
Publisher: Springer
ISBN: 3319595482
Category : Science
Languages : en
Pages : 356
Book Description
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’s last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.
Publisher: Springer
ISBN: 3319595482
Category : Science
Languages : en
Pages : 356
Book Description
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’s last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.
Functional Magnetic Resonance Imaging
Author: Scott A. Huettel
Publisher:
ISBN: 9780878932887
Category : Brain
Languages : en
Pages : 492
Book Description
Publisher:
ISBN: 9780878932887
Category : Brain
Languages : en
Pages : 492
Book Description
Deep Learning and Convolutional Neural Networks for Medical Image Computing
Author: Le Lu
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327
Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Publisher: Springer
ISBN: 331942999X
Category : Computers
Languages : en
Pages : 327
Book Description
This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
A Mathematical Introduction to Compressive Sensing
Author: Simon Foucart
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 634
Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Publisher: Springer Science & Business Media
ISBN: 0817649484
Category : Computers
Languages : en
Pages : 634
Book Description
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Statistical Learning with Sparsity
Author: Trevor Hastie
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354
Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Publisher: CRC Press
ISBN: 1498712177
Category : Business & Economics
Languages : en
Pages : 354
Book Description
Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Principles of Modern Radar
Author: Mark A. Richards
Publisher: SciTech Publishing
ISBN: 9781839533815
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.
Publisher: SciTech Publishing
ISBN: 9781839533815
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.
Magnetic Resonance Image Reconstruction
Author: Mehmet Akcakaya
Publisher: Academic Press
ISBN: 012822746X
Category : Science
Languages : en
Pages : 518
Book Description
Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction
Publisher: Academic Press
ISBN: 012822746X
Category : Science
Languages : en
Pages : 518
Book Description
Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction
Nonnegative Matrix and Tensor Factorizations
Author: Andrzej Cichocki
Publisher: John Wiley & Sons
ISBN: 9780470747285
Category : Science
Languages : en
Pages : 500
Book Description
This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.
Publisher: John Wiley & Sons
ISBN: 9780470747285
Category : Science
Languages : en
Pages : 500
Book Description
This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions are increasingly used as tools in signal and image processing, and data analysis, having garnered interest due to their capability to provide new insights and relevant information about the complex latent relationships in experimental data sets. It is suggested that NMF can provide meaningful components with physical interpretations; for example, in bioinformatics, NMF and its extensions have been successfully applied to gene expression, sequence analysis, the functional characterization of genes, clustering and text mining. As such, the authors focus on the algorithms that are most useful in practice, looking at the fastest, most robust, and suitable for large-scale models. Key features: Acts as a single source reference guide to NMF, collating information that is widely dispersed in current literature, including the authors’ own recently developed techniques in the subject area. Uses generalized cost functions such as Bregman, Alpha and Beta divergences, to present practical implementations of several types of robust algorithms, in particular Multiplicative, Alternating Least Squares, Projected Gradient and Quasi Newton algorithms. Provides a comparative analysis of the different methods in order to identify approximation error and complexity. Includes pseudo codes and optimized MATLAB source codes for almost all algorithms presented in the book. The increasing interest in nonnegative matrix and tensor factorizations, as well as decompositions and sparse representation of data, will ensure that this book is essential reading for engineers, scientists, researchers, industry practitioners and graduate students across signal and image processing; neuroscience; data mining and data analysis; computer science; bioinformatics; speech processing; biomedical engineering; and multimedia.
Rhythms of the Brain
Author: G. Buzsáki
Publisher: Oxford University Press
ISBN: 0199828237
Category : Medical
Languages : en
Pages : 465
Book Description
Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.
Publisher: Oxford University Press
ISBN: 0199828237
Category : Medical
Languages : en
Pages : 465
Book Description
Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.
GPU Computing Gems Emerald Edition
Author:
Publisher: Elsevier
ISBN: 0123849896
Category : Computers
Languages : en
Pages : 889
Book Description
GPU Computing Gems Emerald Edition offers practical techniques in parallel computing using graphics processing units (GPUs) to enhance scientific research. The first volume in Morgan Kaufmann's Applications of GPU Computing Series, this book offers the latest insights and research in computer vision, electronic design automation, and emerging data-intensive applications. It also covers life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, video and image processing. This book is intended to help those who are facing the challenge of programming systems to effectively use GPUs to achieve efficiency and performance goals. It offers developers a window into diverse application areas, and the opportunity to gain insights from others' algorithm work that they may apply to their own projects. Readers will learn from the leading researchers in parallel programming, who have gathered their solutions and experience in one volume under the guidance of expert area editors. Each chapter is written to be accessible to researchers from other domains, allowing knowledge to cross-pollinate across the GPU spectrum. Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution. The insights and ideas as well as practical hands-on skills in the book can be immediately put to use. Computer programmers, software engineers, hardware engineers, and computer science students will find this volume a helpful resource. For useful source codes discussed throughout the book, the editors invite readers to the following website: ..." - Covers the breadth of industry from scientific simulation and electronic design automation to audio / video processing, medical imaging, computer vision, and more - Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution - Offers insights and ideas as well as practical "hands-on" skills you can immediately put to use
Publisher: Elsevier
ISBN: 0123849896
Category : Computers
Languages : en
Pages : 889
Book Description
GPU Computing Gems Emerald Edition offers practical techniques in parallel computing using graphics processing units (GPUs) to enhance scientific research. The first volume in Morgan Kaufmann's Applications of GPU Computing Series, this book offers the latest insights and research in computer vision, electronic design automation, and emerging data-intensive applications. It also covers life sciences, medical imaging, ray tracing and rendering, scientific simulation, signal and audio processing, statistical modeling, video and image processing. This book is intended to help those who are facing the challenge of programming systems to effectively use GPUs to achieve efficiency and performance goals. It offers developers a window into diverse application areas, and the opportunity to gain insights from others' algorithm work that they may apply to their own projects. Readers will learn from the leading researchers in parallel programming, who have gathered their solutions and experience in one volume under the guidance of expert area editors. Each chapter is written to be accessible to researchers from other domains, allowing knowledge to cross-pollinate across the GPU spectrum. Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution. The insights and ideas as well as practical hands-on skills in the book can be immediately put to use. Computer programmers, software engineers, hardware engineers, and computer science students will find this volume a helpful resource. For useful source codes discussed throughout the book, the editors invite readers to the following website: ..." - Covers the breadth of industry from scientific simulation and electronic design automation to audio / video processing, medical imaging, computer vision, and more - Many examples leverage NVIDIA's CUDA parallel computing architecture, the most widely-adopted massively parallel programming solution - Offers insights and ideas as well as practical "hands-on" skills you can immediately put to use