Author: Irina V. Melnikova
Publisher: CRC Press
ISBN: 1420035495
Category : Mathematics
Languages : en
Pages : 259
Book Description
Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularizat
Abstract Cauchy Problems
Author: Irina V. Melnikova
Publisher: CRC Press
ISBN: 1420035495
Category : Mathematics
Languages : en
Pages : 259
Book Description
Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularizat
Publisher: CRC Press
ISBN: 1420035495
Category : Mathematics
Languages : en
Pages : 259
Book Description
Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularizat
Vector-valued Laplace Transforms and Cauchy Problems
Author: Wolfgang Arendt
Publisher: Springer Science & Business Media
ISBN: 3034850751
Category : Mathematics
Languages : en
Pages : 526
Book Description
Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .
Publisher: Springer Science & Business Media
ISBN: 3034850751
Category : Mathematics
Languages : en
Pages : 526
Book Description
Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .
Stochastic Cauchy Problems in Infinite Dimensions
Author: Irina V. Melnikova
Publisher: CRC Press
ISBN: 1498785859
Category : Mathematics
Languages : en
Pages : 160
Book Description
Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.
Publisher: CRC Press
ISBN: 1498785859
Category : Mathematics
Languages : en
Pages : 160
Book Description
Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.
Evolution Equations and Their Applications in Physical and Life Sciences
Author: G Lumer
Publisher: CRC Press
ISBN: 9780824790103
Category : Medical
Languages : en
Pages : 534
Book Description
This volume presents a collection of lectures on linear partial differntial equations and semigroups, nonlinear equations, stochastic evolutionary processes, and evolution problems from physics, engineering and mathematical biology. The contributions come from the 6th International Conference on Evolution Equations and Their Applications in Physical and Life Sciences, held in Bad Herrenalb, Germany.
Publisher: CRC Press
ISBN: 9780824790103
Category : Medical
Languages : en
Pages : 534
Book Description
This volume presents a collection of lectures on linear partial differntial equations and semigroups, nonlinear equations, stochastic evolutionary processes, and evolution problems from physics, engineering and mathematical biology. The contributions come from the 6th International Conference on Evolution Equations and Their Applications in Physical and Life Sciences, held in Bad Herrenalb, Germany.
The Navier-Stokes Equations
Author: Hermann Sohr
Publisher: Springer Science & Business Media
ISBN: 3034805519
Category : Mathematics
Languages : en
Pages : 376
Book Description
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.
Publisher: Springer Science & Business Media
ISBN: 3034805519
Category : Mathematics
Languages : en
Pages : 376
Book Description
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.
Abstract Differential Equations and Nonlinear Mixed Problems
Author: Tosio Katō
Publisher:
ISBN:
Category : Differential equations, Elliptic
Languages : en
Pages : 87
Book Description
Publisher:
ISBN:
Category : Differential equations, Elliptic
Languages : en
Pages : 87
Book Description
The Cauchy Problem
Author: Hector O. Fattorini
Publisher: Cambridge University Press
ISBN: 0521302382
Category : Mathematics
Languages : en
Pages : 664
Book Description
This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schrödinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and physicists who are not specialists in this area as well as to graduate students.
Publisher: Cambridge University Press
ISBN: 0521302382
Category : Mathematics
Languages : en
Pages : 664
Book Description
This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schrödinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and physicists who are not specialists in this area as well as to graduate students.
Basic Theory Of Fractional Differential Equations (Second Edition)
Author: Yong Zhou
Publisher: World Scientific
ISBN: 9813148187
Category : Mathematics
Languages : en
Pages : 380
Book Description
This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.
Publisher: World Scientific
ISBN: 9813148187
Category : Mathematics
Languages : en
Pages : 380
Book Description
This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.
Abstract Evolution Equations, Periodic Problems and Applications
Author: D Daners
Publisher: Chapman and Hall/CRC
ISBN:
Category : Mathematics
Languages : en
Pages : 268
Book Description
Part of the Pitman Research Notes in Mathematics series, this text covers: linear evolution equations of parabolic type; semilinear evolution equations of parabolic type; evolution equations and positivity; semilinear periodic evolution equations; and applications.
Publisher: Chapman and Hall/CRC
ISBN:
Category : Mathematics
Languages : en
Pages : 268
Book Description
Part of the Pitman Research Notes in Mathematics series, this text covers: linear evolution equations of parabolic type; semilinear evolution equations of parabolic type; evolution equations and positivity; semilinear periodic evolution equations; and applications.
The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations
Author: J. C. Meyer
Publisher: Cambridge University Press
ISBN: 1107477395
Category : Mathematics
Languages : en
Pages : 177
Book Description
A monograph containing significant new developments in the theory of reaction-diffusion systems, particularly those arising in chemistry and life sciences.
Publisher: Cambridge University Press
ISBN: 1107477395
Category : Mathematics
Languages : en
Pages : 177
Book Description
A monograph containing significant new developments in the theory of reaction-diffusion systems, particularly those arising in chemistry and life sciences.