Author: László Fuchs
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Abelian Groups
Author: László Fuchs
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Abelian Groups
Author: Carol Jacoby
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427680
Category : Mathematics
Languages : en
Pages : 342
Book Description
This monograph covers in a comprehensive manner the current state of classification theory with respect to infinite abelian groups. A wide variety of ways to characterise different classes of abelian groups by invariants, isomorphisms and duality principles are discussed.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110427680
Category : Mathematics
Languages : en
Pages : 342
Book Description
This monograph covers in a comprehensive manner the current state of classification theory with respect to infinite abelian groups. A wide variety of ways to characterise different classes of abelian groups by invariants, isomorphisms and duality principles are discussed.
Infinite Abelian Groups
Author:
Publisher: Academic Press
ISBN: 0080873480
Category : Mathematics
Languages : en
Pages : 305
Book Description
Infinite Abelian Groups
Publisher: Academic Press
ISBN: 0080873480
Category : Mathematics
Languages : en
Pages : 305
Book Description
Infinite Abelian Groups
Abelian Groups and Representations of Finite Partially Ordered Sets
Author: David Arnold
Publisher: Springer Science & Business Media
ISBN: 1441987509
Category : Mathematics
Languages : en
Pages : 256
Book Description
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
Publisher: Springer Science & Business Media
ISBN: 1441987509
Category : Mathematics
Languages : en
Pages : 256
Book Description
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
Fourier Analysis on Finite Abelian Groups
Author: Bao Luong
Publisher: Springer Science & Business Media
ISBN: 0817649166
Category : Mathematics
Languages : en
Pages : 167
Book Description
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
Publisher: Springer Science & Business Media
ISBN: 0817649166
Category : Mathematics
Languages : en
Pages : 167
Book Description
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
Infinite Abelian Groups
Author:
Publisher:
ISBN:
Category : Abelian groups
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Abelian groups
Languages : en
Pages : 0
Book Description
Topics in Factorization of Abelian Groups
Author: Sandor Szabo
Publisher: Springer Science & Business Media
ISBN: 9783764371586
Category : Mathematics
Languages : en
Pages : 354
Book Description
The main objective of this book is to give a systematic exposition of the main results and techniques of the factorization theory of abelian groups. The necessary background materials are presented along with some of the most important applications in geometry, combinatorics, coding theory, and number theory. A large part of the text is accessible to students, requiring only basic knowledge in group theory and algebra. Helpful exercises are provided in every chapter.
Publisher: Springer Science & Business Media
ISBN: 9783764371586
Category : Mathematics
Languages : en
Pages : 354
Book Description
The main objective of this book is to give a systematic exposition of the main results and techniques of the factorization theory of abelian groups. The necessary background materials are presented along with some of the most important applications in geometry, combinatorics, coding theory, and number theory. A large part of the text is accessible to students, requiring only basic knowledge in group theory and algebra. Helpful exercises are provided in every chapter.
Exercises in Abelian Group Theory
Author: D. Valcan
Publisher: Springer Science & Business Media
ISBN: 9401703396
Category : Mathematics
Languages : en
Pages : 353
Book Description
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science,'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992,these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap.
Publisher: Springer Science & Business Media
ISBN: 9401703396
Category : Mathematics
Languages : en
Pages : 353
Book Description
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science,'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992,these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap.
Potential Theory on Locally Compact Abelian Groups
Author: C. van den Berg
Publisher: Springer Science & Business Media
ISBN: 3642661289
Category : Mathematics
Languages : en
Pages : 205
Book Description
Classical potential theory can be roughly characterized as the study of Newtonian potentials and the Laplace operator on the Euclidean space JR3. It was discovered around 1930 that there is a profound connection between classical potential 3 theory and the theory of Brownian motion in JR . The Brownian motion is determined by its semigroup of transition probabilities, the Brownian semigroup, and the connection between classical potential theory and the theory of Brownian motion can be described analytically in the following way: The Laplace operator is the infinitesimal generator for the Brownian semigroup and the Newtonian potential kernel is the" integral" of the Brownian semigroup with respect to time. This connection between classical potential theory and the theory of Brownian motion led Hunt (cf. Hunt [2]) to consider general "potential theories" defined in terms of certain stochastic processes or equivalently in terms of certain semi groups of operators on spaces of functions. The purpose of the present exposition is to study such general potential theories where the following aspects of classical potential theory are preserved: (i) The theory is defined on a locally compact abelian group. (ii) The theory is translation invariant in the sense that any translate of a potential or a harmonic function is again a potential, respectively a harmonic function; this property of classical potential theory can also be expressed by saying that the Laplace operator is a differential operator with constant co efficients.
Publisher: Springer Science & Business Media
ISBN: 3642661289
Category : Mathematics
Languages : en
Pages : 205
Book Description
Classical potential theory can be roughly characterized as the study of Newtonian potentials and the Laplace operator on the Euclidean space JR3. It was discovered around 1930 that there is a profound connection between classical potential 3 theory and the theory of Brownian motion in JR . The Brownian motion is determined by its semigroup of transition probabilities, the Brownian semigroup, and the connection between classical potential theory and the theory of Brownian motion can be described analytically in the following way: The Laplace operator is the infinitesimal generator for the Brownian semigroup and the Newtonian potential kernel is the" integral" of the Brownian semigroup with respect to time. This connection between classical potential theory and the theory of Brownian motion led Hunt (cf. Hunt [2]) to consider general "potential theories" defined in terms of certain stochastic processes or equivalently in terms of certain semi groups of operators on spaces of functions. The purpose of the present exposition is to study such general potential theories where the following aspects of classical potential theory are preserved: (i) The theory is defined on a locally compact abelian group. (ii) The theory is translation invariant in the sense that any translate of a potential or a harmonic function is again a potential, respectively a harmonic function; this property of classical potential theory can also be expressed by saying that the Laplace operator is a differential operator with constant co efficients.
Abelian Group Theory
Author: László Fuchs
Publisher: American Mathematical Soc.
ISBN: 0821850687
Category : Mathematics
Languages : en
Pages : 310
Book Description
The traditional biennial international conference of abelian group theorists was held in August, 1987 at the University of Western Australia in Perth. With some 40 participants from five continents, the conference yielded a variety of papers indicating the healthy state of the field and showing the significant advances made in many areas since the last such conference in Oberwolfach in 1985. This volume brings together the papers presented at the Perth conference, together with a few others submitted by those unable to attend. The first section of the book is concerned with the structure of $p$-groups. It begins with a survey on H. Ulm's contributions to abelian group theory and related areas and also describes the surprising interaction between set theory and the structure of abelian $p$-groups. Another group of papers focuses on automorphism groups and the endomorphism rings of abelian groups. The book also examines various aspects of torsion-free groups, including the theory of their structure and torsion-free groups with many automorphisms. After one paper on mixed groups, the volume closes with a group of papers dealing with properties of modules which generalize corresponding properties of abelian groups.
Publisher: American Mathematical Soc.
ISBN: 0821850687
Category : Mathematics
Languages : en
Pages : 310
Book Description
The traditional biennial international conference of abelian group theorists was held in August, 1987 at the University of Western Australia in Perth. With some 40 participants from five continents, the conference yielded a variety of papers indicating the healthy state of the field and showing the significant advances made in many areas since the last such conference in Oberwolfach in 1985. This volume brings together the papers presented at the Perth conference, together with a few others submitted by those unable to attend. The first section of the book is concerned with the structure of $p$-groups. It begins with a survey on H. Ulm's contributions to abelian group theory and related areas and also describes the surprising interaction between set theory and the structure of abelian $p$-groups. Another group of papers focuses on automorphism groups and the endomorphism rings of abelian groups. The book also examines various aspects of torsion-free groups, including the theory of their structure and torsion-free groups with many automorphisms. After one paper on mixed groups, the volume closes with a group of papers dealing with properties of modules which generalize corresponding properties of abelian groups.