Author: László Fuchs
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Abelian Groups
Author: László Fuchs
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Publisher: Springer
ISBN: 3319194224
Category : Mathematics
Languages : en
Pages : 762
Book Description
Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.
Abelian Groups and Representations of Finite Partially Ordered Sets
Author: David Arnold
Publisher: Springer Science & Business Media
ISBN: 1441987509
Category : Mathematics
Languages : en
Pages : 256
Book Description
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
Publisher: Springer Science & Business Media
ISBN: 1441987509
Category : Mathematics
Languages : en
Pages : 256
Book Description
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
Exercises in Abelian Group Theory
Author: D. Valcan
Publisher: Springer Science & Business Media
ISBN: 9401703396
Category : Mathematics
Languages : en
Pages : 353
Book Description
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science,'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992,these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap.
Publisher: Springer Science & Business Media
ISBN: 9401703396
Category : Mathematics
Languages : en
Pages : 353
Book Description
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science,'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992,these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap.
TOPICS IN ALGEBRA, 2ND ED
Author: I.N.Herstein
Publisher: John Wiley & Sons
ISBN: 9788126510184
Category : Algebra
Languages : en
Pages : 396
Book Description
About The Book: This book on algebra includes extensive revisions of the material on finite groups and Galois Theory. Further more the book also contains new problems relating to Algebra.
Publisher: John Wiley & Sons
ISBN: 9788126510184
Category : Algebra
Languages : en
Pages : 396
Book Description
About The Book: This book on algebra includes extensive revisions of the material on finite groups and Galois Theory. Further more the book also contains new problems relating to Algebra.
Problems in Group Theory
Author: John D. Dixon
Publisher: Courier Corporation
ISBN: 0486459160
Category : Mathematics
Languages : en
Pages : 194
Book Description
265 challenging problems in all phases of group theory, gathered for the most part from papers published since 1950, although some classics are included.
Publisher: Courier Corporation
ISBN: 0486459160
Category : Mathematics
Languages : en
Pages : 194
Book Description
265 challenging problems in all phases of group theory, gathered for the most part from papers published since 1950, although some classics are included.
Kazhdan-Lusztig Theory and Related Topics
Author: Vinay Deodhar
Publisher: American Mathematical Soc.
ISBN: 0821851500
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume attests to the far-reaching influence of Kazhdan-Lusztig theory on several areas of mathematics by presenting a diverse set of research articles centered on this theme. Although there has been a great deal of work in Kazhdan-Lusztig theory, this book is perhaps the first to discuss all aspects of the theory and gives readers a flavor of the range of topics involved. The articles present recent work in Kazhdan-Lusztig theory, including representations of Kac-Moody Lie algebras, geometry of Schubert varieties, intersection cohomology of stratified spaces, and some new topics such as quantum groups.
Publisher: American Mathematical Soc.
ISBN: 0821851500
Category : Mathematics
Languages : en
Pages : 288
Book Description
This volume attests to the far-reaching influence of Kazhdan-Lusztig theory on several areas of mathematics by presenting a diverse set of research articles centered on this theme. Although there has been a great deal of work in Kazhdan-Lusztig theory, this book is perhaps the first to discuss all aspects of the theory and gives readers a flavor of the range of topics involved. The articles present recent work in Kazhdan-Lusztig theory, including representations of Kac-Moody Lie algebras, geometry of Schubert varieties, intersection cohomology of stratified spaces, and some new topics such as quantum groups.
A Panorama of Modern Operator Theory and Related Topics
Author: Harry Dym
Publisher: Springer Science & Business Media
ISBN: 3034802218
Category : Mathematics
Languages : en
Pages : 635
Book Description
This book is dedicated to the memory of Israel Gohberg (1928–2009) – one of the great mathematicians of our time – who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg’s mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory.
Publisher: Springer Science & Business Media
ISBN: 3034802218
Category : Mathematics
Languages : en
Pages : 635
Book Description
This book is dedicated to the memory of Israel Gohberg (1928–2009) – one of the great mathematicians of our time – who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg’s mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory.
Homotopy Theory and Related Topics
Author: Mamoru Mimura
Publisher: Springer
ISBN: 3540469389
Category : Mathematics
Languages : en
Pages : 246
Book Description
Publisher: Springer
ISBN: 3540469389
Category : Mathematics
Languages : en
Pages : 246
Book Description
A Course in Group Theory
Author: J. F. Humphreys
Publisher: Oxford University Press, USA
ISBN: 9780198534594
Category : Language Arts & Disciplines
Languages : en
Pages : 296
Book Description
Each chapter ends with a summary of the material covered and notes on the history and development of group theory.
Publisher: Oxford University Press, USA
ISBN: 9780198534594
Category : Language Arts & Disciplines
Languages : en
Pages : 296
Book Description
Each chapter ends with a summary of the material covered and notes on the history and development of group theory.
Groups, Modules, and Model Theory - Surveys and Recent Developments
Author: Manfred Droste
Publisher: Springer
ISBN: 331951718X
Category : Mathematics
Languages : en
Pages : 493
Book Description
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
Publisher: Springer
ISBN: 331951718X
Category : Mathematics
Languages : en
Pages : 493
Book Description
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.