Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781722033507
Category :
Languages : en
Pages : 24
Book Description
The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained. Leveque, R. J. and Yee, H. C. Ames Research Center ...
A Study of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms
A Study of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms
Author: National Aeronautics and Space Administration NASA
Publisher:
ISBN: 9781729144930
Category :
Languages : en
Pages : 24
Book Description
The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained. Leveque, R. J. and Yee, H. C. Ames Research Center ...
Publisher:
ISBN: 9781729144930
Category :
Languages : en
Pages : 24
Book Description
The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained. Leveque, R. J. and Yee, H. C. Ames Research Center ...
Finite Volume Methods for Hyperbolic Problems
Author: Randall J. LeVeque
Publisher: Cambridge University Press
ISBN: 1139434187
Category : Mathematics
Languages : en
Pages : 582
Book Description
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Publisher: Cambridge University Press
ISBN: 1139434187
Category : Mathematics
Languages : en
Pages : 582
Book Description
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Numerical Approximation of Hyperbolic Systems of Conservation Laws
Author: Edwige Godlewski
Publisher: Springer Nature
ISBN: 1071613448
Category : Mathematics
Languages : en
Pages : 846
Book Description
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
Publisher: Springer Nature
ISBN: 1071613448
Category : Mathematics
Languages : en
Pages : 846
Book Description
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.
Hyperbolic Problems: Theory, Numerics, Applications
Author: Thomas Y. Hou
Publisher: Springer Science & Business Media
ISBN: 9783540443339
Category : Mathematics
Languages : en
Pages : 986
Book Description
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
Publisher: Springer Science & Business Media
ISBN: 9783540443339
Category : Mathematics
Languages : en
Pages : 986
Book Description
The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.
Hyperbolic Problems: Theory, Numerics, Applications
Author: Heinrich Freistühler
Publisher: Birkhäuser
ISBN: 3034883706
Category : Mathematics
Languages : en
Pages : 481
Book Description
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computation is of fundamental importance. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended ther modynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability ofshock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite ele ment schemes, adaptive, multiresolution, and artificial dissipation methods.
Publisher: Birkhäuser
ISBN: 3034883706
Category : Mathematics
Languages : en
Pages : 481
Book Description
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computation is of fundamental importance. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended ther modynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability ofshock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite ele ment schemes, adaptive, multiresolution, and artificial dissipation methods.
Annual Research Briefs ...
Author: Center for Turbulence Research (U.S.)
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 534
Book Description
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 534
Book Description
Applied Nonlinear Analysis
Author: Adélia Sequeira
Publisher: Springer Science & Business Media
ISBN: 0306470969
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book is meant as a present to honor Professor on the th occasion of his 70 birthday. It collects refereed contributions from sixty-one mathematicians from eleven countries. They cover many different areas of research related to the work of Professor including Navier-Stokes equations, nonlinear elasticity, non-Newtonian fluids, regularity of solutions of parabolic and elliptic problems, operator theory and numerical methods. The realization of this book could not have been made possible without the generous support of Centro de Matemática Aplicada (CMA/IST) and Fundação Calouste Gulbenkian. Special thanks are due to Dr. Ulrych for the careful preparation of the final version of this book. Last but not least, we wish to express our gratitude to Dr. for her invaluable assistance from the very beginning. This project could not have been successfully concluded without her enthusiasm and loving care for her father. On behalf of the editors ADÉLIA SEQUEIRA v honored by the Order of Merit of the Czech Republic by Václav Havel, President of the Czech Republic, on the October 28, 1998, Professor Emeritus of Mathematics at the Charles University in Prague, Presidential Research Professor at the Northern Illinois University and Doctor Honoris Causa at the Technical University of Dresden, has been enriching the Czech and world mathematics with his new ideas in the areas of partial differential equations, nonlinear functional analysis and applications of the both disciplines in continuum mechanics and hydrodynamics for more than forty years.
Publisher: Springer Science & Business Media
ISBN: 0306470969
Category : Mathematics
Languages : en
Pages : 569
Book Description
This book is meant as a present to honor Professor on the th occasion of his 70 birthday. It collects refereed contributions from sixty-one mathematicians from eleven countries. They cover many different areas of research related to the work of Professor including Navier-Stokes equations, nonlinear elasticity, non-Newtonian fluids, regularity of solutions of parabolic and elliptic problems, operator theory and numerical methods. The realization of this book could not have been made possible without the generous support of Centro de Matemática Aplicada (CMA/IST) and Fundação Calouste Gulbenkian. Special thanks are due to Dr. Ulrych for the careful preparation of the final version of this book. Last but not least, we wish to express our gratitude to Dr. for her invaluable assistance from the very beginning. This project could not have been successfully concluded without her enthusiasm and loving care for her father. On behalf of the editors ADÉLIA SEQUEIRA v honored by the Order of Merit of the Czech Republic by Václav Havel, President of the Czech Republic, on the October 28, 1998, Professor Emeritus of Mathematics at the Charles University in Prague, Presidential Research Professor at the Northern Illinois University and Doctor Honoris Causa at the Technical University of Dresden, has been enriching the Czech and world mathematics with his new ideas in the areas of partial differential equations, nonlinear functional analysis and applications of the both disciplines in continuum mechanics and hydrodynamics for more than forty years.
Enumath 97 - Proceedings Of The Second European Conference On Numerical Mathematics And Advanced Applications
Author: Hans Georg Bock
Publisher: World Scientific
ISBN: 9814544612
Category :
Languages : en
Pages : 692
Book Description
The ENUMATH conferences were established in 1995 in order to provide a forum for discussion on recent topics of numerical mathematics. They seek to bring together leading experts and young scientists, with special emphasis on contributions from Europe.In the second ENUMATH conference in 1997, recent results and new trends in the analysis of numerical algorithms as well as their application to challenging scientific and industrial problems were discussed. Apart from theoretical aspects, a major part of the conference was devoted to numerical methods in interdisciplinary applications.The topics covered in this proceedings include: higher order finite element methods, non-matching grids, least-squares methods for partial differential equations, multiscale analysis, boundary element method, optimization in partial differential equations, solid mechanics, microstructures, computational fluid dynamics, computational electrodynamics and semiconductors.
Publisher: World Scientific
ISBN: 9814544612
Category :
Languages : en
Pages : 692
Book Description
The ENUMATH conferences were established in 1995 in order to provide a forum for discussion on recent topics of numerical mathematics. They seek to bring together leading experts and young scientists, with special emphasis on contributions from Europe.In the second ENUMATH conference in 1997, recent results and new trends in the analysis of numerical algorithms as well as their application to challenging scientific and industrial problems were discussed. Apart from theoretical aspects, a major part of the conference was devoted to numerical methods in interdisciplinary applications.The topics covered in this proceedings include: higher order finite element methods, non-matching grids, least-squares methods for partial differential equations, multiscale analysis, boundary element method, optimization in partial differential equations, solid mechanics, microstructures, computational fluid dynamics, computational electrodynamics and semiconductors.
Godunov Methods
Author: E.F. Toro
Publisher: Springer Science & Business Media
ISBN: 1461506638
Category : Computers
Languages : en
Pages : 1050
Book Description
This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford in October 1999, to commemo rate the 70th birthday of the Russian mathematician Sergei K. Godunov. The meeting enjoyed the participation of 140 scientists from 20 countries; one of the participants commented: everyone is here, meaning that virtu ally everybody who had made a significant contribution to the general area of numerical methods for hyperbolic conservation laws, along the lines first proposed by Godunov in the fifties, was present at the meeting. Sadly, there were important absentees, who due to personal circumstance could not at tend this very exciting gathering. The central theme o{ the meeting, and of this book, was numerical methods for hyperbolic conservation laws fol lowing Godunov's key ideas contained in his celebrated paper of 1959. But Godunov's contributions to science are not restricted to Godunov's method.
Publisher: Springer Science & Business Media
ISBN: 1461506638
Category : Computers
Languages : en
Pages : 1050
Book Description
This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford in October 1999, to commemo rate the 70th birthday of the Russian mathematician Sergei K. Godunov. The meeting enjoyed the participation of 140 scientists from 20 countries; one of the participants commented: everyone is here, meaning that virtu ally everybody who had made a significant contribution to the general area of numerical methods for hyperbolic conservation laws, along the lines first proposed by Godunov in the fifties, was present at the meeting. Sadly, there were important absentees, who due to personal circumstance could not at tend this very exciting gathering. The central theme o{ the meeting, and of this book, was numerical methods for hyperbolic conservation laws fol lowing Godunov's key ideas contained in his celebrated paper of 1959. But Godunov's contributions to science are not restricted to Godunov's method.