A Second Course in Stochastic Processes

A Second Course in Stochastic Processes PDF Author: Samuel Karlin
Publisher: Gulf Professional Publishing
ISBN: 9780123986504
Category : Business & Economics
Languages : en
Pages : 568

Get Book Here

Book Description
Algebraic methods in markov chains; Ratio theorems of transition probabilities and applications; Sums of independent random variables as a markov chain; Order statistics, poisson processes, and applications; Continuous time markov chains; Diffusion processes; Compouding stochastic processes; Fluctuation theory of partial sums of independent identically distributed random variables; Queueing processes.

A Second Course in Stochastic Processes

A Second Course in Stochastic Processes PDF Author: Samuel Karlin
Publisher: Gulf Professional Publishing
ISBN: 9780123986504
Category : Business & Economics
Languages : en
Pages : 568

Get Book Here

Book Description
Algebraic methods in markov chains; Ratio theorems of transition probabilities and applications; Sums of independent random variables as a markov chain; Order statistics, poisson processes, and applications; Continuous time markov chains; Diffusion processes; Compouding stochastic processes; Fluctuation theory of partial sums of independent identically distributed random variables; Queueing processes.

Stochastic Processes

Stochastic Processes PDF Author: Sheldon M. Ross
Publisher: John Wiley & Sons
ISBN: 0471120626
Category : Mathematics
Languages : en
Pages : 549

Get Book Here

Book Description
A nonmeasure theoretic introduction to stochastic processes. Considers its diverse range of applications and provides readers with probabilistic intuition and insight in thinking about problems. This revised edition contains additional material on compound Poisson random variables including an identity which can be used to efficiently compute moments; a new chapter on Poisson approximations; and coverage of the mean time spent in transient states as well as examples relating to the Gibb's sampler, the Metropolis algorithm and mean cover time in star graphs. Numerous exercises and problems have been added throughout the text.

Accelerated Testing

Accelerated Testing PDF Author: Wayne B. Nelson
Publisher: John Wiley & Sons
ISBN: 0470317477
Category : Mathematics
Languages : en
Pages : 626

Get Book Here

Book Description
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering." –Dev G. Raheja, Quality and Reliability Engineering International ". . . an impressive book. The width and number of topics covered, the practical data sets included, the obvious knowledge and understanding of the author and the extent of published materials reviewed combine to ensure that this will be a book used frequently." –Journal of the Royal Statistical Society A benchmark text in the field, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis offers engineers, scientists, and statisticians a reliable resource on the effective use of accelerated life testing to measure and improve product reliability. From simple data plots to advanced computer programs, the text features a wealth of practical applications and a clear, readable style that makes even complicated physical and statistical concepts uniquely accessible. A detailed index adds to its value as a reference source.

The Theory of Measures and Integration

The Theory of Measures and Integration PDF Author: Eric M. Vestrup
Publisher: John Wiley & Sons
ISBN: 0470317957
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
An accessible, clearly organized survey of the basic topics of measure theory for students and researchers in mathematics, statistics, and physics In order to fully understand and appreciate advanced probability, analysis, and advanced mathematical statistics, a rudimentary knowledge of measure theory and like subjects must first be obtained. The Theory of Measures and Integration illuminates the fundamental ideas of the subject-fascinating in their own right-for both students and researchers, providing a useful theoretical background as well as a solid foundation for further inquiry. Eric Vestrup's patient and measured text presents the major results of classical measure and integration theory in a clear and rigorous fashion. Besides offering the mainstream fare, the author also offers detailed discussions of extensions, the structure of Borel and Lebesgue sets, set-theoretic considerations, the Riesz representation theorem, and the Hardy-Littlewood theorem, among other topics, employing a clear presentation style that is both evenly paced and user-friendly. Chapters include: * Measurable Functions * The Lp Spaces * The Radon-Nikodym Theorem * Products of Two Measure Spaces * Arbitrary Products of Measure Spaces Sections conclude with exercises that range in difficulty between easy "finger exercises"and substantial and independent points of interest. These more difficult exercises are accompanied by detailed hints and outlines. They demonstrate optional side paths in the subject as well as alternative ways of presenting the mainstream topics. In writing his proofs and notation, Vestrup targets the person who wants all of the details shown up front. Ideal for graduate students in mathematics, statistics, and physics, as well as strong undergraduates in these disciplines and practicing researchers, The Theory of Measures and Integration proves both an able primary text for a real analysis sequence with a focus on measure theory and a helpful background text for advanced courses in probability and statistics.

Robust Methods in Biostatistics

Robust Methods in Biostatistics PDF Author: Stephane Heritier
Publisher: John Wiley & Sons
ISBN: 9780470740545
Category : Medical
Languages : en
Pages : 292

Get Book Here

Book Description
Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.

Applied Linear Regression

Applied Linear Regression PDF Author: Sanford Weisberg
Publisher: John Wiley & Sons
ISBN: 0471704083
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.

Multivariate Density Estimation

Multivariate Density Estimation PDF Author: David W. Scott
Publisher: John Wiley & Sons
ISBN: 047031768X
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
Written to convey an intuitive feel for both theory and practice, its main objective is to illustrate what a powerful tool density estimation can be when used not only with univariate and bivariate data but also in the higher dimensions of trivariate and quadrivariate information. Major concepts are presented in the context of a histogram in order to simplify the treatment of advanced estimators. Features 12 four-color plates, numerous graphic illustrations as well as a multitude of problems and solutions.

Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models PDF Author: David Insua
Publisher: John Wiley & Sons
ISBN: 0470744537
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Basic and Advanced Bayesian Structural Equation Modeling

Basic and Advanced Bayesian Structural Equation Modeling PDF Author: Sik-Yum Lee
Publisher: John Wiley & Sons
ISBN: 1118358872
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduced, whilst SEM with a nonparametric structural equation to assess unspecified functional relationships among latent variables are also explored. Statistical methodologies are developed using the Bayesian approach giving reliable results for small samples and allowing the use of prior information leading to better statistical results. Estimates of the parameters and model comparison statistics are obtained via powerful Markov Chain Monte Carlo methods in statistical computing. Introduces the Bayesian approach to SEMs, including discussion on the selection of prior distributions, and data augmentation. Demonstrates how to utilize the recent powerful tools in statistical computing including, but not limited to, the Gibbs sampler, the Metropolis-Hasting algorithm, and path sampling for producing various statistical results such as Bayesian estimates and Bayesian model comparison statistics in the analysis of basic and advanced SEMs. Discusses the Bayes factor, Deviance Information Criterion (DIC), and $L_\nu$-measure for Bayesian model comparison. Introduces a number of important generalizations of SEMs, including multilevel and mixture SEMs, latent curve models and longitudinal SEMs, semiparametric SEMs and those with various types of discrete data, and nonparametric structural equations. Illustrates how to use the freely available software WinBUGS to produce the results. Provides numerous real examples for illustrating the theoretical concepts and computational procedures that are presented throughout the book. Researchers and advanced level students in statistics, biostatistics, public health, business, education, psychology and social science will benefit from this book.

Choice

Choice PDF Author:
Publisher:
ISBN:
Category : Academic libraries
Languages : en
Pages : 716

Get Book Here

Book Description