A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows

A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows PDF Author: Naveed Ahmed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier-Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.

A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows

A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows PDF Author: Naveed Ahmed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier-Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.

An Assessment of Two Classes of Variational Multiscale Methods for the Simulation of Incompressible Turbulent Flows

An Assessment of Two Classes of Variational Multiscale Methods for the Simulation of Incompressible Turbulent Flows PDF Author: Naveed Ahmed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Numerical Analysis of a Variational Multiscale Method for Turbulence

Numerical Analysis of a Variational Multiscale Method for Turbulence PDF Author: Songül Kaya Merdan
Publisher: LAP Lambert Academic Publishing
ISBN: 9783845432083
Category :
Languages : en
Pages : 80

Get Book Here

Book Description
Despite efforts of more than centuries, turbulence phenomena is categorized as an unsolved problem. Turbulence is part of everyday's life. The majority of flows of industrial and technological applications are turbulent; natural flows are invariably so. There are many important and interesting physical phenomena which are connected with turbulent flows. Turbulence is observed in natural and engineering applications such as in weather prediction, air pollution, water pollution, aerodynamics and heat exchangers. This work considers an accurate and reliable solutions of turbulent flows. It is concerned with one of the most promising approaches to the numerical simulation of turbulent flows, the subgrid eddy viscosity models. We analyze both continuous and discontinuous finite element approximation of the new subgrid eddy viscosity model. This approach has the advantage that the diffusivity is introduced only on the small scales of the flow. Numerical test shows the new stabilization technique is robust and efficient in solving Navier-Stokes equations for a wide range of Reynolds numbers.

Finite Element Methods for Incompressible Flow Problems

Finite Element Methods for Incompressible Flow Problems PDF Author: Volker John
Publisher: Springer
ISBN: 3319457500
Category : Mathematics
Languages : en
Pages : 816

Get Book Here

Book Description
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

Turbulence Modeling by a Projection-based Variational Multiscale Method for Incompressible Flow Problems

Turbulence Modeling by a Projection-based Variational Multiscale Method for Incompressible Flow Problems PDF Author: Lars Röhe
Publisher:
ISBN: 9783862471737
Category :
Languages : en
Pages : 205

Get Book Here

Book Description


Progress in Industrial Mathematics at ECMI 2016

Progress in Industrial Mathematics at ECMI 2016 PDF Author: Peregrina Quintela
Publisher: Springer
ISBN: 3319630822
Category : Mathematics
Languages : en
Pages : 749

Get Book Here

Book Description
This book addresses mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Using the classification system defined in the EU Framework Programme for Research and Innovation H2020, several of the topics covered belong to the challenge climate action, environment, resource efficiency and raw materials; and some to health, demographic change and wellbeing; while others belong to Europe in a changing world – inclusive, innovative and reflective societies. The 19th European Conference on Mathematics for Industry, ECMI2016, was held in Santiago de Compostela, Spain in June 2016. The proceedings of this conference include the plenary lectures, ECMI awards and special lectures, mini-symposia (including the description of each mini-symposium) and contributed talks. The ECMI conferences are organized by the European Consortium for Mathematics in Industry with the aim of promoting interaction between academy and industry, leading to innovation in both fields and providing unique opportunities to discuss the latest ideas, problems and methodologies, and contributing to the advancement of science and technology. They also encourage industrial sectors to propose challenging problems where mathematicians can provide insights and fresh perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.

The Variational Multiscale Method for Laminar and Turbulent Incompressible Flow

The Variational Multiscale Method for Laminar and Turbulent Incompressible Flow PDF Author: Volker Gravemeier
Publisher:
ISBN: 9783000130342
Category :
Languages : en
Pages : 207

Get Book Here

Book Description


Development, Verification and Validation of High-order Methods for the Simulation of Turbulence

Development, Verification and Validation of High-order Methods for the Simulation of Turbulence PDF Author: Farshad Navah
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"This work discusses the development, the verification and the validation of high-order (of accuracy) solvers for the simulation of turbulent fluid flows. In a first part, a methodology for the verification of high-order solvers is proposed which examines the implementation, in a given computer software, of mathematical models that represent the flow dynamics. The method of manufactured solutions is adopted which allows for the exact evaluation of discretization errors and observed orders of accuracy. The latter are compared to the theoretical orders of accuracy for a variety of increasingly complex problems, starting from unbounded (by walls) inviscid flows and gradually reaching the case of realistic turbulent boundary layers, modelled by the Reynolds-averaged Navier-Stokes equations, along with the original and the negative Spalart-Allmaras closure models. Each case serves to illustrate and discuss salient aspects of the proposed methodology.Code verification via manufactured solutions is furthermore distinguished from solution verification and the latter is extended to high-order frameworks by describing the approach for error estimation via extrapolation of high-order solutions which is applied, as an example, to the case of turbulent flow over a flat plate. This exercise enabled the exploration into the question of high-order grid convergence for various output quantities of interest as well as the question of uncertainty analysis. This pointed at the inadequacy of substituting solution verification to proper high-order solver verification, even for a relatively simple problem and an expert set of grids. It is therefore recommended to use the solutions of actual problems for engineering and science applications, only along with estimated numerical uncertainties, especially for lower orders which are more error-prone. In the second part of this work, a compact high-order variational multiscale method for the large-eddy simulation of turbulence is devised and validated. The existing multiscale method is thus expanded from modal frameworks to a large family of compact high-order nodal schemes, represented by the recent flux reconstruction discretization method. The potential of the proposed formulation is then assessed on a Taylor-Green vortex problem and its results are validated against the filtered data from direct numerical simulations. It is thus revealed that proper de-aliasing is mandatory to conserve the quality of high-order large-eddy simulation. Furthermore, reducing the numerical dissipation of Roe's Riemann solver is found to contribute to improving low-Mach flow solutions for variational multiscale methods. Finally, the proposed variational-multiscale formulation resulted in noticeable improvements over the baseline implicit as well as the classical large-eddy simulations." --

A Variational Multiscale Method for Turbulent Flow Simulation with Adaptive Large Scale Space

A Variational Multiscale Method for Turbulent Flow Simulation with Adaptive Large Scale Space PDF Author: Volker John
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Multiscale and Multiresolution Approaches in Turbulence

Multiscale and Multiresolution Approaches in Turbulence PDF Author: Pierre Sagaut
Publisher: World Scientific
ISBN: 1848169876
Category : Science
Languages : en
Pages : 446

Get Book Here

Book Description
The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.